Distributed Databases
Data Warehousing

CPS 216
Advanced Database Systems

Review

Distributed DBMS
* Top-down approach

— Data partitioning

— Query processing

— Query optimization

— Concurrency control and recovery
* Bottom-up approach

— Query processing and optimization

Optimizing distributed queries

What is different from optimizing centralized queries?
* New strategies: parallel joins, semijoins, ...
 Plans have a new property: “interesting sites”
» Communication cost is a big factor besides /O
— Per-message cost, per-byte cost, CPU cost to pack/unpack data

* Parallelism: response time versus total resource

consumption Plan B

Plan A L 70l

100 ‘ 40]
I

Example: two-step optimization

» Step 1 (compile time): decide the join order, join

methods, and access paths
— Same complexity as in a centralized DBMS

 Step 2 (run time): decide where to execute each operator

— Can cope with changing load and network characteristics

— Can use data that has been dynamically allocated to a site
(caching or replication)

Better: (iie2

Step 1: >

Concurrency control & recovery in
Distributed DBMS
* Rich and interesting field

* We will just sample the field by looking at the
problem of distributed transaction commit

Transaction 7'

Site 1

commit abort commit

Two-phase commit

Coordinator Participant

T.commit
prepare* NOK

@ abort¥

Notation: Incoming message * = everyone
Outgoing message 6

Key points of 2PC

» By sending OK a participant promises the
coordinator to commit

— But it can only commit when instructed to do so by
the coordinator

— The coordinator could tell it to abort instead

« After sending NOK a participant can abort
unilaterally

* Coordinator can decide to commit only if all
participants have responded OK

* Logging of all messages are required at each site

7

Bottom-up approach to
Building a distributed DBMS

* Data already in various sources

* Build a distributed DBMS to provide global,
uniform access to all data
— How to integrate data?

— How to deal with heterogeneous and autonomous
sources?

» Mediation approach

Wrapper/mediator architecture

Mediator

» Accept queries from clients
* Rewrite and optimize queries

* Send subplans to be executed

by wrappers —

-
* Combine results from

wrappers and perform any additional local processing
necessary

. |Database

* Mediator catalog stores global schema and external
schema of sources as exported by wrappers

» No source-specific code in a mediator!

Wrapper II ‘Wrapper I I Wrapper I
Database Database e Database
9
Wrapper

» Hide heterogeneity away
from mediator

 Translate mediator requests
so that they are understood —
by sources

— Example: SELECT * FROM

Books WHERE title LIKE *%Databases’; — a form-based
search request for books with title matching “*Databases”

. |Database

 Translate results returned by a source so that they are
compliant with its external schema
— Example: result HTML page — Books tuples

Query optimization with wrappers

Basic questions

* Capability: What types of subplans can be
handled by a wrapper?
— How do we enumerate valid plans?

» Cost: What is the cost of executing a subplan by a
wrapper?
— How do we pick the optimal plan?

Example: Garlic query optimization

¢ Haasetal.,, VLDB 1997
* Incorporated in DB2

 Rules for generating valid plans
— Supplied by wrappers and mediator
— Plugged into the optimizer
* Plans have “interesting properties”
— Order (as in Selinger)
— Site (where the output is produced)
— Columns (in the output)
— Predicates (that have been applied)
— Cost, etc. 13

Example rules for a DBMS source

» wrap_access(table, columns, predicates) =
SCANpg\s(table, columns, predicates)
— Condition: table is at my site

— I can handle any projection and selection (by converting them
to a single-table SELECT-FROM-WHERE SQL statement)

» wrap_join(subplan,, subplan,, predicates) =
JOINpgys(subplan,, subplan,, predicates)
— Condition: subplan,.site = subplan,.site = my site
— I can handle any local join (by converting it to a multi-table
SELECT-FROM-WHERE SQL statement)

14

Example rules for a Web source

» wrap_access(table, columns, predicates) =
FETCHy,(Books, title LIKE string)
— Condition: table = Books, (title LIKE string) O predicates
— I can search books by title (with wildcards); no projection
» wrap_access(table, columns, predicates) =
FETCH,,(Books, author = string)
— Condition: table = Books, (author = string) O predicates
— I can search books by exact author names; no projection
— I cannot search books by title and author at the same time

* No wrap_join rule
— I cannot handle process joins 5

Example rules for the mediator

* med_pushdown(subplan) = RECEIVE(SEND(subplan))
— Condition: subplan.site # mediator
» med_pushdown(subplan) = subplan

— Condition: subplan.site = mediator

* med access(table, columns, predicates) =
O plan O wrap_access(table, columns, predicates):
FILTER,, 4(med_pushdown(plan)),
predicates — plan.predicates)
— I can get the result of a single-table scan from a wrapper and
then evaluate remaining selection predicates -

More rules for the mediator

» med_join(subplan,, subplan,, predicates) =
O plan O wrap_join(subplan,, subplan,, predicates):
med_pushdown(plan)
— Condition: subplan,.site = subplan,.site # mediator
— I can push down a join to a wrapper

» med_join(subplan,, subplan,, predicates) =
JOIN,, .q(med_pushdown(subplan,),
med_pushdown(subplan,), predicates)

— Talso can handle a join locally

* And more... -

Plan enumeration

» Call all wrap_access and med_access rules to generate
single-table access plans
* Repeatedly call all wrap_join and med_join rules to
generate multi-table join plans
« Example final plans
— FILTER,,
RECEIVE(SEND(FETCHyy,,(Books, title LIKE string))),
author = string), versus
FILTER,(
RECEIVE(SEND(FETCHy,(Books, author = string))),
title LIKE string)
— RECEIVE(SEND(JOIN (R, S))), versus
JOIN, _(RECEIVE(SEND(R)), RECEIVE(SEND(S)))

med

Costing

* Wrapper-supplied cost model
— Lots of work for wrapper developers
* Calibration
— Define a generic cost model with parameters for all
wrappers
« Example: cost = ¢ - (# of tuples)
— Run test queries to measure the parameters for each
wrapper
 Learning curve

— Use recent statistics to adjust cost estimates
» Example: cost = average over last three runs B

Summary of wrapper/mediator

Not all sources are created equal!
* What’s in a source?
— Wrapper: source schema <> external schema
— Mediator: external schema < global schema
* What can it do?

— Wrappers and mediators supply rules describing their
query processing capabilities

* How much does it cost?
— Wrappers supply cost model, or
— Mediator calibrates or learns the cost model

Data warehousing

* Data resides in many distributed, heterogeneous
OLTP (On-Line Transaction Processing) sources

— Sales, inventory, customer, ...
— NC branch, NY branch, CA branch, ...

* Need to support OLAP (On-Line Analytical
Processing) over an integrated view of the data

» Store the integrated data at a central repository
called the data warehouse

21

OLTP versus OLAP
OLTP OLAP
* Mostly updates * Mostly reads

* Short, simple transactions ¢ Long, complex queries
* Clerical users * Analysts, decision makers

* Goal: ACID, transaction ¢ Goal: fast queries
throughput

Warehousing versus mediation

Warehousing

» Eager “integration”
— In advance: before queries
— Answer could be stale

» Copy data from sources

— Need to maintain
consistency
— Query processing is local
to the warehouse
« Faster

+ Can operate when sources
are unavailable

Mediation
* Lazy “integration”
— On demand: at query time
— Answer is more up-to-date
» Leave data at sources

— No need to maintain
consistency

— Sources participate in
query processing

23

Maintaining a data warehouse

Buzz word: the “ETL” process

« Extraction: extract relevant data and/or changes
from sources

e Transformation: transform data to match the
warehouse schema

» Loading: integrate data/changes into the
warehouse

» Can still use a wrapper/mediator architecture .

Warehouse data = materialized views

* If the transformation process can be captured by
SQL, then warehouse data can be seen as a view

— CREATE VIEW warehouse_table AS
SELECT ...
FROM source_tablel, source table2, ...
WHERE ...;

* Except the view is materialized
— That is, the result is stored
— And needs to be maintained when source data changes

25

Maintaining materialized views

Voia= ORqyqs)
Change detected: R, <— R, — OR[N R
What is V,..?

new*
* Recomputation: V., < O(Rew» ---)
— Done periodically, e.g., every “night”
— What if there is no “night,” e.g., an international organization?
— What if recomputation takes longer than a day?
* Incremental maintenance
— Compute only the changes to V: OV and AV
— Apply the changes to V4 Ve, < Vou— OV A V
» Potentially much faster if changes are small

Incremental maintenance

Example: V=0, R
* Change: R, < R4 — OR

0,(Ryq—OR) =0, R, — 0, OR)
=V -7

- Vnew =0, Rnew

* Change: R (< R ;[N R
o, (Ryg ™ R)=0,R 400, AR
=V 7

Change propagation equations

27

Change propagation

* More change propagation equations
-RIM Rp>aS=
(R><8) 0 (AR ><)
-R-OR)paS=
Rp><aS)—-(OR><S)
» Repeatedly apply change propagation equations
to “factor out” changes
— (0, (RIA R)) >, 0, 5=
(0,,RU0, AR)><, 0, S=
(0,, R><,,.0,8) U (0, AR><, 0, 5)

prs 7 ps

Self-maintainability

* A warehouse is self-maintainable if it can be
maintained without accessing the sources
* Self-maintainable: V=0, R
* Not self-maintainable: V=R >< §
— AR and R need to be joined with §
— AS and [0S need to be joined with R
— Problem: need to query the source for maintenance
* What if the source/network is slow?

« What if the source/network is down?
« What if the source has been updated again? 2

Making warehouse self-maintainable

* Add auxiliary views

Example:. Or'der ><10.0ID = L.OID AND O.month = "nov’ AND L.product =
“book® LINEItEM

» Naive approach: add base tables O and L

* Better approach: push selections down and then add
selection VIews 0,,qn = oy O AN Gypoquce = *book: L

+ Use constraints

— The join is a foreign-key join (L.OID references O.0ID), so
only 0, onm = moy: O 18 needed

— If we only insert matching orders and lineitems together, then
no auxiliary view is needed -

Next time

* Warehouse design
 Data cube
* ROLAP versus MOLAP

