Data Mining

CPS 216
Advanced Database Systems

Data mining

» Data — knowledge

* DBMS meets Al and statistics

 Usually complex statistical “queries” that are
difficult to answer

» Warehousing is a must if data needs to be
integrated from various sources

» Often done using specialized algorithms outside
the DBMS

— Some recent work on pushing mining inside DBMS
(Sarawagi et al., SIGMOD 1998)

2

Data mining problems

* Clustering: group together similar items and
separate dissimilar ones
* Prediction: predict values of some attributes from
others based on training data
— Classification: predict the “class label”
— Regression: predict a numeric attribute value
 Association analysis: detect attribute-value
conditions that occur frequently together

* Outlier analysis, evolution analysis, etc., etc.

3

Data mining applications

* Business

— Marketing, finance, investment, insurance...

« Urban legend: WalMart discovered that people who bought
diapers tended to buy beer at the same time

* Science

— Astronomy, environmental science, genomics...
* Law enforcement

— Fraud detection, criminal profiling...

Association rule mining

A k.a. market-basket analysis

* A transaction (market D _J[Es _
. T001 |diaper, milk, candy
basket) contains a set of T002_|mik, eqg
2 T003 ilk, b
items bought together = Eépefemrnk =5

. . T005 |diaper, beer
Given a lot of transactions, [Toos |mik, beer

: T007 _|diaper, beer
discover rules such as ST R e
“diaper = beer” or “digital [T009_|diaper, mik, beer
camera, scanner =
graphics software”

Association rules

* An association rule has the form X = Y, where X and Y
are disjoint itemsets (sets of items)
— Confidence c%: ¢% of the transactions that contain X also
contain Y
— Support $%: % of all transactions contain both X and Y
» Note: association rules are directional

« “Diaper = beer” and “beer = diaper” mean different things

* Problem: Given a set of transactions, find all association
rules with confidence and support greater than or equal
to specified thresholds c,; % and s ;%

6

Mining association rules

* Step 1: Find frequent itemsets, and count the
number of times they appear in transactions
— An itemset X is frequent if no less than s_; % of all
transactions contain X
« That is, count(X) >s_, % - total # of transactions

= “min

* Step 2: Mine association rules from frequent
itemsets

Finding frequent itemsets

* First try: a brute-force approach
— Keep a running count for each possible itemset

— For each transaction T, and for each itemset X, if T
contains X then increment the count for X

— Return itemsets with large enough counts
* Problem: The number of itemsets is huge!
— 2" where n is the number of items

 Think: How do you prune the search space?

The Apriori property

« All subsets of a frequent itemset must also be
frequent

— Because any transaction that contains X must also
contains subsets of X

» If you have already verified that X is infrequent,
there is no need to count X’s supersets because
they must be infrequent too

The Apriori algorithm

Agrawal & Srikant, VLDB 1994

» Multiple passes over the transactions

* Pass k finds all frequent k-itemsets (itemset of
size k)

* Use the set of frequent (k — 1)-itemsets found in
the previous pass to narrow the search for k-
itemsets

Pseudo-code for Apriori

Scan the transactions to find L,, the set of all frequent 1-
itemsets, together with their counts;
for (k=2;L,_,#0; k+t) {
Generate C,, the set of candidate k-itemsets,
from L, _,, the set of frequent (k — 1)-itemsets found
in the previous step;
Scan the transactions to count the occurrences
of itemsets in C ;
Find Ly, a subset of C, containing k-itemsets with
counts no less than (s;,% - total # of transactions); }
Return L, O L, O ... OL

Candidate generation

From L, _, to C,

* Join: combine frequent (kK — 1)-itemsets to form
candidate k-itemsets

* Prune: ensure every size-(K — 1) subset of a
candidate is frequent

Candidate generation: join

» Combine almost-matching pairs of frequent
(k — 1)-itemsets
— INSERT INTO C,
SELECT p.item,, p.item,, ..., p.item, _ ;, Q.item, _,
FROML,_,p, L., q
WHERE p.item, = ¢.item,
AND p.item, = q.item, AND ...
AND p.item,_, = g.item,_,
AND p.item, | <(.item,_;
» The last conjunct ensures no duplicates
» Can you justify why p and q should almost match?

Candidate generation: prune

* Remove candidates with an infrequent
size-(kK — 1) subset
— for each itemset ¢ in Cy:
for each item X in C:
if c— {x} isnotin L, _, then:
delete ¢ from C,

Example: pass 1

TID__[items

3
Q
=
>
o]
m

o

L,

itemset |count

{A} 6

5]

=3

(=2}
1> > |> |® (> > |2 @
m(m|olo|ol@|o|o]

{B}

oo
m

<

7

6
T010 [F {D} 2
Transactions {E} 2

Smin%o = 20% Itemset { F } is infrequent

Example: pass 2

':[;(?1 '/erYSE Generate Scan and Check
T002_[B, D candidates count min. support
T003 B, C
T004 |A,B.D /\ /\ /\
T005 |[A, C
T006_|B.C L, C, C, L,
T007_|A.C 7 - F i
To0eH |- NEYGCAE itemset [count| | itemset | | itemset |count| | itemset |count
T009 |A, B, C A o As g Ae 4 4 AS 4
oo T (B} 7 Ac|[{Ac] 4 ACt]| 4
- {cY 6 {A, D} AD) [1 {AE} | 2
Transactions {D} 2 {A E} AE | 2 {8.C} | 4
{E} 2 {B, C} {B.¢c | 4 {8.D} | 2
Smin’0 = 20% (8D} || {BD} | 2 |[[{BE}| 2
B.E |[{BE | 2
c.ot | [{cDy | 0
{C. E} {CE | 1
{.E |[{D.E | 0 -
Example: pass 3
_:[;gl I:ESE Generate Scan and Check
T002_[B, D candidates count min. support
T003 B, C
T004 |A,B.D /\ /\ /\
T005 |[A, C
T006_|B.C L, G, (oA Ly
T007_|A.C ; : F i
T00eH |- NEYGAE itemset [count| | itemset | | itemset |count| | itemset |count
S Bt AB | 4 |[{aB.cl [aABC 2 |[{aBCH 2
S Act | 4 |[iaBE| [{ABE| 2 |[{ABE[2
- (A E} | 2 |meeem—"
Transactions {B,C} | 4 |-mtSmcmbs
{B.D} | 2 |seimomin
Sminv0 = 20% (B.E} | 2 |-t

TID

items

T001

T002

T003

T004

T005

T006

T007

Example: pass 4

Generate
candidates

L

C,

C,and L, are empty

T008

CE

itemset

count

[itemset

T009

@ [o]o|o|m|o|o|m

C

{A, B, C}

2

T010

TR

{A B, E}

2

Transactions

Sminv0 = 20%

Example: final answer

L L, L
itemset [count itemset |count itemset |count

{A} 6 {A, B} 4 {A,B.C}| 2
{B} 7 Anc | 4 {A/B.E}| 2
{C} 6 AE [2
{D} 2 {B.C} | 4
{E} 2 {8.D} | 2

{B, E} 2

Mining rules from frequent itemsets

« for each frequent itemset I:

for each nonempty proper subset s of I: "e?,]je{ °°§"‘
if confidence = count(l) / count(s) (B | 7
> Cpn% then: g =
output s = (I -9); {E} 2
 Example: rules from | = {A, B, E} are gi' ?} .
— A, B = E (confidence 2/4 = 50%) aE | 2
— A, E = B (confidence 2/2 = 100%) E:' gi ‘2‘
— B, E = A (confidence 2/2 = 100%) {B: B | 2
— A = B, E (confidence 2/6 = 33%) {AB,C} 2
{AB.E} 2

— B = A, E (confidence 2/7 = 29%)

— E = A, B (confidence 2/2 = 100%)
20

Data structure for counting itemsets

* Problem: Given a transaction, determine which
itemsets in C, it contains
* Idea: Build a tree structure from C,
* Example: CZ = { {AaB}: {Aa C}: {AaD}a {A: E}:
{B, C}, {B,D}, {B,E}, {C,D}, {C,E}, {D,E} }
Transaction: A, D, E, F
B TN
« Remember all nodes visited
E < If item matches any outgoing edge,

follow it
* Ata leaf node, increment count 21

Hash tree

» What if the tree may too big or imbalanced?
» Merge edges using a hash function
* Leaves must now store the exact itemset

A and B hash to the same key
C and D hash to the same key

22

Other tricks and extensions

¢ Transaction reduction

— If a transaction does not contain any frequent k-itemset, remove
it from further consideration

» AprioriTid, AprioriHybrid, from the same paper
* Dynamic itemset counting
— Why only introduce candidate itemsets at the end of a scan?
Start counting them whenever there is enough support from
smaller itemsets
— Fewer passes over data
» Brin et al., SIGMOD 1997

* Parallelization, sampling, incremental mining, etc.
23

End-semester logistics

* Project demo

— You should already have received an email about your
scheduled 30-minute slot

¢ Final exam
— Thursday, December 13, 9:00am — 12:00pm
— In this room
— Comprehensive, emphasis on the latter half
— Open book, open notes

» TA and instructor office hours

— Same as regular office hours
24

Some points to remember from 216

* Declarativeness is good
— Relational model, relational algebra, SQL, ...
* Redundancy is bad
— Normal forms, decomposition, ...
O Redundancy is gOOd (for performance, as long as you can hide it)
— Replication, warehousing, materialized views, indexes, ...
* One more level of indirection solves lots of things
— Secondary indexes, wrappers, ...
* Query optimizer is really “query goodifier”
— Assumptions and heuristics to narrow the search space...
* Think beyond tables
— Bitmap indexes, wavelet histograms, data cube, MOLAP, 2.

Next semester

* CPS 296.1: Advanced topics in databases
— Data mining
— XML and Web data processing
— Incremental and approximate query evaluation
— Materialized views for caching and warehousing

26

