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Data Mining

CPS 216
Advanced Database Systems
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Data mining
• Data → knowledge
• DBMS meets AI and statistics
• Usually complex statistical “queries” that are 

difficult to answer
» Warehousing is a must if data needs to be 

integrated from various sources
» Often done using specialized algorithms outside 

the DBMS
– Some recent work on pushing mining inside DBMS 

(Sarawagi et al., SIGMOD 1998)
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Data mining problems
• Clustering: group together similar items and 

separate dissimilar ones
• Prediction: predict values of some attributes from 

others based on training data
– Classification: predict the “class label”
– Regression: predict a numeric attribute value

• Association analysis: detect attribute-value 
conditions that occur frequently together

• Outlier analysis, evolution analysis, etc., etc.
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Data mining applications
• Business

– Marketing, finance, investment, insurance…
• Urban legend: WalMart discovered that people who bought 

diapers tended to buy beer at the same time

• Science
– Astronomy, environmental science, genomics…

• Law enforcement
– Fraud detection, criminal profiling…
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Association rule mining
A.k.a. market-basket analysis
• A transaction (market 

basket) contains a set of 
items bought together

• Given a lot of transactions, 
discover rules such as
“diaper ⇒ beer” or “digital 
camera, scanner ⇒
graphics software”

TID items
T001 diaper, milk, candy
T002 milk, egg
T003 milk, beer
T004 diaper, milk, egg
T005 diaper, beer
T006 milk, beer
T007 diaper, beer
T008 diaper, milk, beer, candy
T009 diaper, milk, beer

… …
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Association rules
• An association rule has the form X ⇒ Y, where X and Y

are disjoint itemsets (sets of items)
– Confidence c%: c% of the transactions that contain X also 

contain Y
– Support s%: s% of all transactions contain both X and Y
» Note: association rules are directional

• “Diaper ⇒ beer” and “beer ⇒ diaper” mean different things

• Problem: Given a set of transactions, find all association 
rules with confidence and support greater than or equal 
to specified thresholds cmin% and smin%
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Mining association rules
• Step 1: Find frequent itemsets, and count the 

number of times they appear in transactions
– An itemset X is frequent if no less than smin% of all 

transactions contain X
• That is, count(X) ≥ smin% · total # of transactions

• Step 2: Mine association rules from frequent 
itemsets
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Finding frequent itemsets
• First try: a brute-force approach

– Keep a running count for each possible itemset
– For each transaction T, and for each itemset X, if T

contains X then increment the count for X
– Return itemsets with large enough counts

• Problem: The number of itemsets is huge!
– 2n, where n is the number of items

• Think: How do you prune the search space?
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The Apriori property

• All subsets of a frequent itemset must also be 
frequent
– Because any transaction that contains X must also 

contains subsets of X

» If you have already verified that X is infrequent, 
there is no need to count X’s supersets because 
they must be infrequent too

10

The Apriori algorithm
Agrawal & Srikant, VLDB 1994

• Multiple passes over the transactions
• Pass k finds all frequent k-itemsets (itemset of 

size k)
• Use the set of frequent (k – 1)-itemsets found in 

the previous pass to narrow the search for k-
itemsets
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Pseudo-code for Apriori
Scan the transactions to find L1, the set of all frequent 1-
itemsets, together with their counts;
for (k = 2; Lk – 1 ≠ ∅ ; k++) {

Generate Ck, the set of candidate k-itemsets,
from Lk – 1, the set of frequent (k – 1)-itemsets found
in the previous step;
Scan the transactions to count the occurrences
of itemsets in Ck ;
Find Lk, a subset of Ck containing k-itemsets with
counts no less than (smin% · total # of transactions); }

Return L1 ∪ L2 ∪ … ∪ Lk;
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Candidate generation

From Lk – 1 to Ck

• Join: combine frequent (k – 1)-itemsets to form 
candidate k-itemsets

• Prune: ensure every size-(k – 1) subset of a 
candidate is frequent
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Candidate generation: join
• Combine almost-matching pairs of frequent

(k – 1)-itemsets
– INSERT INTO Ck

SELECT p.item1, p.item2, …, p.itemk – 1, q.itemk – 1
FROM Lk – 1 p, Lk – 1 q
WHERE p.item1 = q.item1
AND p.item2 = q.item2 AND …
AND p.itemk – 2 = q.itemk – 2
AND p.itemk – 1 < q.itemk – 1;

» The last conjunct ensures no duplicates
» Can you justify why p and q should almost match? 14

Candidate generation: prune
• Remove candidates with an infrequent

size-(k – 1) subset
– for each itemset c in Ck:

for each item x in c:
if c – {x} is not in Lk – 1 then:

delete c from Ck
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Example: pass 1

itemset count
{A} 6
{B} 7
{C} 6
{D} 2
{E} 2

L1

Itemset { F } is infrequent

TID items
T001 A, B, E
T002 B, D
T003 B, C
T004 A, B, D
T005 A, C
T006 B, C
T007 A, C
T008 A, B, C, E
T009 A, B, C
T010 F

Transactions

smin% = 20%
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Example: pass 2

itemset count
{A} 6
{B} 7
{C} 6
{D} 2
{E} 2

L1

TID items
T001 A, B, E
T002 B, D
T003 B, C
T004 A, B, D
T005 A, C
T006 B, C
T007 A, C
T008 A, B, C, E
T009 A, B, C
T010 F

L1

Transactions

itemset
{A, B}
{A, C}
{A, D}
{A, E}
{B, C}
{B, D}
{B, E}
{C, D}
{C, E}
{D, E}

C2

Generate
candidates

itemset count
{A, B} 4
{A, C} 4
{A, D} 1
{A, E} 2
{B, C} 4
{B, D} 2
{B, E} 2
{C, D} 0
{C, E} 1
{D, E} 0

C2

Scan and
count

itemset count
{A, B} 4
{A, C} 4
{A, E} 2
{B, C} 4
{B, D} 2
{B, E} 2

L2

Check
min. support

smin% = 20%
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Example: pass 3
TID items
T001 A, B, E
T002 B, D
T003 B, C
T004 A, B, D
T005 A, C
T006 B, C
T007 A, C
T008 A, B, C, E
T009 A, B, C
T010 F

Transactions

itemset count
{A, B} 4
{A, C} 4
{A, E} 2
{B, C} 4
{B, D} 2
{B, E} 2

L2

itemset
{A, B, C}
{A, B, E}
{A, C, E}
{B, C, D}
{B, C, E}
{B, D, E}

C3

Generate
candidates

itemset count
{A, B, C} 2
{A, B, E} 2

C3

Scan and
count

Check
min. support

itemset count
{A, B, C} 2
{A, B, E} 2

L3

smin% = 20%
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Example: pass 4
TID items
T001 A, B, E
T002 B, D
T003 B, C
T004 A, B, D
T005 A, C
T006 B, C
T007 A, C
T008 A, B, C, E
T009 A, B, C
T010 F

Transactions

L3 C4 and L4 are empty
itemset

{A, B, C, E}

C4

Generate
candidates

itemset count
{A, B, C} 2
{A, B, E} 2

smin% = 20%
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Example: final answer

itemset count
{A} 6
{B} 7
{C} 6
{D} 2
{E} 2

L1

itemset count
{A, B} 4
{A, C} 4
{A, E} 2
{B, C} 4
{B, D} 2
{B, E} 2

L2
itemset count
{A, B, C} 2
{A, B, E} 2

L3
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Mining rules from frequent itemsets
• for each frequent itemset l:

for each nonempty proper subset s of l:
if confidence = count(l) ⁄ count(s) 

≥ cmin% then:
output s ⇒ (l – s);

• Example: rules from l = {A, B, E} are
– A, B ⇒ E (confidence 2/4 = 50%)
– A, E ⇒ B (confidence 2/2 = 100%)
– B, E ⇒ A (confidence 2/2 = 100%)
– A ⇒ B, E (confidence 2/6 = 33%)
– B ⇒ A, E (confidence 2/7 = 29%)
– E ⇒ A, B (confidence 2/2 = 100%)

itemset count
{A} 6
{B} 7
{C} 6
{D} 2
{E} 2

{A, B} 4
{A, C} 4
{A, E} 2
{B, C} 4
{B, D} 2
{B, E} 2

{A, B, C} 2
{A, B, E} 2
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Data structure for counting itemsets
• Problem: Given a transaction, determine which 

itemsets in Ck it contains
• Idea: Build a tree structure from Ck

• Example: C2 = { {A, B}, {A, C}, {A, D}, {A, E}, 
{B, C}, {B, D}, {B, E}, {C, D}, {C, E}, {D, E} }

A B C
D

B C D E C D E D E E

Transaction: A, D, E, F

• Remember all nodes visited
• If item matches any outgoing edge,

follow it
• At a leaf node, increment count 22

Hash tree
• What if the tree may too big or imbalanced?
• Merge edges using a hash function
• Leaves must now store the exact itemset

A B C
D

B C D E C D E D E E

A|B C|D

A|B C|D E C|D E

AB AC
AD
BC
BD

AE
BE

CDCE
DE

A and B hash to the same key
C and D hash to the same key

23

Other tricks and extensions
• Transaction reduction

– If a transaction does not contain any frequent k-itemset, remove 
it from further consideration

» AprioriTid, AprioriHybrid, from the same paper
• Dynamic itemset counting

– Why only introduce candidate itemsets at the end of a scan? 
Start counting them whenever there is enough support from 
smaller itemsets

– Fewer passes over data
» Brin et al., SIGMOD 1997

• Parallelization, sampling, incremental mining, etc.
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End-semester logistics
• Project

– Demo: You should have received an email about your 
scheduled slot

– Report: Due on the day of the final exam
• Final exam

– Thursday, December 13, 9:00am – 12:00pm
– In this room
– Comprehensive, emphasis on the latter half
– Open book, open notes

• TA and instructor office hours
– Same as regular office hours



5

25

Some points to remember from 216
• Declarativeness is good

– Relational model, relational algebra, SQL, …
• Redundancy is bad

– Normal forms, decomposition, …
• Redundancy is good (for performance, as long as you can hide it)

– Replication, warehousing, materialized views, indexes, …
• One more level of indirection solves lots of things

– Secondary indexes, wrappers, …
• Query optimizer is really “query goodifier”

– Assumptions and heuristics to narrow the search space…
• Think beyond tables

– Bitmap indexes, wavelet histograms, data cube, MOLAP, … 26

Next semester

• CPS 296.1: Advanced topics in databases
– Data mining
– XML and Web data processing
– Incremental and approximate query evaluation
– Materialized views for caching and warehousing


