
1

An Evaluation of Buffer Management
Strategies for Relational Database Systems

Junfei Geng, Dazhi Wang, Jing Zhang and Junyi Xie

CPS 216, Duke CS,
Oct 20, 2001

By Hong-Tai Chou and David J. DeWitt

One-line summary:

A model of relational query behavior

(QLSM: Query Locality Set Model)

A buffer management strategy: DBMIN

(QLSM predicts future reference behavior)

Outline

� Introduction and Related Work (me)

� Old Algorithms and QLSM (Dazhi)

� DBMIN (Jing)

� Evaluation, Results and Conclusions (Junyi)

Introduction and Related
Work

By

Junfei Geng

Why not use OS ?

� “Operating System Support for Database Management”,
by Michael Stonebraker, 1981. (e.g. Unix/INGRES)

� OS fails to meet the need of DBMS: wrong service or
severe performance problems.
� Buffer pool management. (next several slides)
� File system. (physical contiguity, overhead)
� Scheduling, process management, and IPC. (overhead of task

switching, lack of scheduling control)
� Consistency control. (only locking for files)

(Stonebraker)

Problems with OS Buffer Pool Management

� Fixed buffer pool and
all file I/O handled
through this cache.

� Read/write.
� LRU replacement.
� Prefetch when UNIX

detects sequential
access to a file.

How Unix does it?
main memory

cache

Y

X

disk

read X

1
2

(Stonebraker)

2

Review of replacement policies

� Optimal – Belady’s Algo
� Random
� FIFO
� LRU – least recently used

To capture program locality.

� LRU approximation: Clock, Aging
� MRU – most recently used

Assume fixed number of frames in memory assigned
to this process.

w=0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
Now

1
2

(2)

0

(0/1/2)

(0)

3 page frames

(0)

(2)

Review of replacement policies

� Working set algorithm
� To capture locality changes: use current

memory needs to determine the
number of page frames for a process.

� Working set at t: the set of pages
referenced in (t-w, t).

� Replacement: any page in memory but not in
any process’s WS is a candidate.

m’ # of frames

Fault
rate

w=0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

tt - w
(w: window size)

Problems with OS Buffer Pool Management

� LRU Replacement
� Database access pattern in INGRES

1. Seq. access to blocks which will not be revisited.
2. Seq. access to blocks which will be cyclically revisited.
3. Random access to blocks which will not be revisited.
4. Random access to blocks which will possibly be revisited.

� Prefecth rules
DB knows what’s next, but next block is not necessarily
the next one in logical file order.

(LRU)

(toss immediately)

(Stonebraker)

(MRU)

Previous Buffer Management Ideas
(“Bad” algorithms)

� Domain separation (Reiter 76)
� “New” algorithm (Kaplan 80)
� Hot Set (Sacco and Schkolnick 82)

Domain Separation (page-oriented)

� Root page of the B-tree is more
important.

� Pages are classified into types, each
of which is separately managed in its
associated domain of buffers.

� Borrow
� Inside each domain: LRU

buffer

Type i

Type 2

Type 1

…

… ……

Domain Separation

� A simple type assignment.
� 8-10% improvement than LRU.
� Limitation:

� Static, the importance of page may vary
in different queries.

� Does not differentiate importance between types.

� Conclusion:
� No better than global algo’s, such as LRU and

CLOCK. (Effelsberg and Haerder) buffer

Type 3

Type 2

Type 1

…

… ……

3

Old Algorithms and QLSM

Dazhi Wang

� Based on two observations:
1. The priority of a page is a property of the

relation to which it belongs;
2. Each relation needs a “working set”.

� Buffer pool is subdivided and allocated
on a per-relation basis

“New” Algorithm

� Algorithm:
� Each active relation is assigned a resident

set which is initially empty.
� The resident sets of relations are linked in

a priority list; Unlikely reused relations
are near top.

� Ordering of relation is pre-determined,
and maybe adjusted subsequently.

� Search from top of the list
� Within each relation: MRU.

“New” Algorithm

R 3

GF

R 1

� Pro:
� A new approach that tracks the locality of

a query through relations.
� Con:

� The use of MRU is justifiable only in
limited cases.

� The rules for ordering relations were
based on intuition.

� Searching a list can be expensive under
high memory contention.

� Hard to extend to multi-user environment

“New” Algorithm

� Hot set (query behavior):
� a set of pages over which

there is a looping behavior.

� Hot point: points of discontinuity.
e.g.: R1× R2, hot point=1+P(R2)=6
where, R2 is inner loop.

Hot Set Algorithm R1×R2

Hot point
Buffer size

Fault

5 7

buffer

R1

R2
� assign buffer for each query based
on hot points; within a buffer, LRU.

� Pro:
� Provides more accurate reference pattern.

� Con:
� Based on LRU, which is inappropriate for

certain looping behavior.

Hot Set Algorithm

4

QLSM: The Query Locality Set Model

� Based on the observation:
� Relational database systems support a limited set

of operations
� Reference patterns are regular and predictable
� The reference patterns can be decomposed into

simple reference patterns
� Reference pattern classification

� Sequential Reference
� Random Reference
� Hierarchical reference

Sequential Reference

� Straight Sequential(SS): sequential scan without
repetition

� e.g. selection on an unordered relation

� Clustered Sequential(CS): local rescan in the course of a
sequential scan

� e.g. merge join

� Looping Sequential(LS): sequential reference be repeated
several times
� e.g. nested loop join

Table1: 1 2 2 3

Table2: 0 2 2 2 5

Random Reference

� Independent Random(IR): genuinely
random accesses
� e.g. access data pages through a non-clustered

index scan

� Clustered Random(CR): random accesses
which demonstrate locality
� e.g. join

– Inner table: non-clustered, non-unique index
– Outer table: clustered, non-unique keys

Hierarchical reference

� Straight Hierarchical(SH): traverse the
index only once
� Hierarchical/Straight Sequential(H/SS):

traversal followed by straight sequential scan.
� Hierarchical/ Clustered Sequential (H/CS):

traversal followed by clustered sequential scan.

� Looping Hierarchical(LH): Repeatedly
traverse an index.
� e.g. join in which the inner relation is indexed on

the join field

DBMIN Algorithm

Jing Zhang

DBMIN

A buffer management algorithm based on
the QLSM.

� Per-file buffer management.
� Each file has a locality set-the set of

buffers referenced for that file.
� Manage each locality set by the access

pattern for that file.

5

Parameters

� N: total number of buffers(page frames)
� Iij: max number of buffers for file

instance j of query i (desired size)
� rij:number of buffers allocated for file

instance j of query i (actual size)

DBMIN-Algorithm

� Initialize all buffers on global free list
� Initialize all locality sets empty with both

l(maximum number of buffers allocated to a
query for a particular file) and r(the number
of buffers currently allocated to a query for a
particular file) to 0.

� If a page is found in both the global and
locality set, update usage stats.

DBMIN-Algorithm(Cont.)

� If the page is in memory, but not local set,
add it to locality set(if it doesn’t belong to
someone else), increment r, and if r>1, evict
a page according to the pattern for this pool.

� If the page isn’t in memory, read it into a free
buffer and proceed as in memory above.

� On file open/close, do load control:
(Open): if Σ Σ l ij <N, query can proceed, o/w

blocks
(Close): release buffers to free list, unblock one

or more other queries

i j

Local algorithms

� SS
� Size is 1
� Replace page as needed

� CS
� Size equal (#tuples in largest cluster)/(# of tuples per

page).
� Replacement is LRU or FIFO

� LS
� Size equal size of file(relation)
� Replacement is MRU

Local algorithms(Cont.)

� IR
� Replacement is whatever you want
� Size is either 1 or threshold(b)

b: the total number of pages referenced
k: the number of random record accesses

e.g.: r=k-b/b, r: residual value
if r<=β, size=1(β is the threshold which a page

is considered to have a high probability to be re-
referenced).
otherwise, size=b

Local algorithms(Cont.)
� CR

� Size is the size of the # of tuples in largest cluster
� Replacement is LRU/FIFO

� SH, H/SS
� Size is 1
� Replacement is MRU

� H/CS
� Similar as CS
� Each member in a cluster is a key-pointer rather than a data

record
� LH

� Size is 3-4(roughly h)
� Replacement is LIFO

6

Evaluations, Results and
Conclusions

By

Junyi Xie

Evaluation Methodology

� Hybrid Simulation Model
� Trace-driven simulation

� Describe the behavior of individual query
� Traces recorded from a real system

� Distribution-driven simulation
� Events generated randomly
� Synthesize the system workload

� Combination of trace-driven and distribution-
driven simulations

� System Workload: described by merging all traces
� Individual query: described by a trace string

Workloads
� Predefined Query Mixes

� Query Mix 1 - M1
� All six query types are

equally requested
� Query Mix 2 – M2

� I and II are chosen half of the time
� Query Mix 3 – M3

� I and II have a combined probability of 75%

6.256.256.256.2537.537.5M3

12.5012.5012.5012.5025.0025.00M2

16.6716.6716.6716.6716.6716.67M1

Type VIType VType IvType IIIType IIType IQuery
Mix

(in %)

HighHighHighVI

HighLowHighV

LowHighHighIV

LowLowHighIII

LowHighLowII

LowLowLowI

Memory
Demand

Disk
Demand

CPU
Demand

Query
Type

Query Classification

Experiments Set One

� Configuration
� Metrics:

� System throughput measured by queries
completed per second under certain number of
concurrent queries

� No Data Sharing
� Every query has its own copy of data

� No Load Control

Simulation Results
Query Mix One: all queries equally distributed

DBMIN

HOT SET

RAND, FIFO, CLOCK, WS
Thrashing!

Sharp degradation!

Simulation Results
Query Mix Two: I + II = 50%

HOT SET

DBMIN

WS

CLOCK

RAND, FIFO

WS becomes much better!

Still the worst!

Thrashing again!

7

Simulation Results
Query Mix Three: I + II = 75%

DBMIN

HOT SET

WS

WS becomes even better!

Worst once more! RAND, FIFO

Clock is a
little better

Thrashing again!

Simulation Results

� DBMIN wins in ALL cases!
� Thrashing always occurs in FIFO, Rand and

Clock.
� Performance degradation associated with

FIFO, Rand and Clock.
� Rand and FIFO yield the worst performance,
� WS does not perform well in M1

� but improved in M2, M3 where query type I, II
increased.

Experiments Set Two

� Effect of Data Sharing
� Half Sharing:

� Every two queries share a copy of data

� Full Sharing
� All queries share a copy of data

� No Load Control

� Metrics:
� Throughput measured by queries/second

Simulation Results
Half sharing Vs Full Sharing, on Query Mix 3

Looks like no data sharing Totally different!

For each algorithm, the performance increases

No thrashing!

Rand, FIFO are the worst

DBMIN is the best again!

Simulation Results

� Data sharing increases the performance for
ALL algorithms.

� It eliminates thrashing, which is evident in
the cases of no data sharing and half data
sharing.

� DBMIN achieves the highest performance in
data sharing.

� Rand and FIFO always perform the worst.

Experiments Set Three

� Effect of Load Control
� What: Mechanism to check the usage of resources

to prevent system from overloading
� Why: To eliminate the thrashing.
� How: “50% rule” – empirical

� When page is kept busy about half of time, we get best
performance

� Feedback load controller
� Estimator: measures utilization of pages
� Optimizer: decides load adjustment to take
� Control switch: activates/deactivates queries according to

decisions from optimizer

8

Simulation Results
Feedback load control of Query Mix 1

WS becomes the worst!

DBMIN is the best

Clock comes close to Hot set

Feedback Load Control

� Pros
� Increase performance of simple algorithms

� FIFO, Rand, Clock

� Cons
� Runtime overhead

� Estimator, optimizer, control switch

� Non-predictive
� Only respond after undesirable condition occurs

Conclusion

� DBMIN wins in ALL cases
� Followed by Hot set, Clock, WS.
� Rand and FIFO do not work well at all.

� Data Sharing can increase the performance,
eliminate thrashing, but DBMIN and Hot set
still win.

� Load control makes simple algorithms
outperform WS, but there are problems with
load control (overhead, non-predictive).

Weakness

� DBMIN needs to predict usage of file instance
� But, is it predictable?

� In the case of multiple users
� If all requirements can not satisfied, what to do?

� Delay one(who)? – How to be fair?
� Or Let them all suffer? – Is that fair?

� Each file instance is considered independently
� So how to make use of the locality across file

instance?
� Across file accesses with one query

Question?

