An Evaluation of Buffer Management

Strategies for Relational Database Systems

By Hong-Tai Chou and David J. DeWitt

Junfei Geng, Dazhi Wang, Jing Zhang and Junyi Xie

CPS 216, Duke CS,
Oct 20, 2001

One-line summary:

A model of relational query behavior
(QLSM: Query Locality Set Model)

|

A buffer management strategy: DBMIN

(QLSM predicts future reference behavior)

Outline

m Introduction and Related Work (me)
m Old Algorithms and QLSM (Dazhi)
= DBMIN (Jing)

m Evaluation, Results and Conclusions (Junyi)

Introduction and Related
Work

By
Junfei Geng

(Stonebraker)

Why not use OS ?

m “Operating System Support for Database Management”,
by Michael Stonebraker, 1981. (e.g. Unix/INGRES)

m OS fails to meet the need of DBMS: wrong service or
severe performance problems.
= Buffer pool management. (next several slides)
» File system. (physical contiguity, overhead)
» Scheduling, process management, and IPC. (overhead of task
switching, lack of scheduling control)
= Consistency control. (only locking for files)

(Stonebraker)

Problems with OS Buffer Pool Management

l read X

How Unix does it?
m Fixed buffer pool and | main memory
all file I/O handled cache

through this cache.
m Read/write.
= LRU replacement.
Prefetch when UNIX
detects sequential
access to a file.

Review of replacement policies

Assume fixed number of frames in memory assigned
to this process.
m Optimal — Belady’s Algo (2

m Random (0/1/2
() w=0123012301234567

m FIFO (0 T Now
m LRU - least recently used (0) o]
To capture program locality.

m LRU approximation: Clock, Aging
m MRU — most recently used (~3Paoeframes

Review of replacement policies

m Working set algorithm f:f;t
= To capture locality changes: use current
memory needs to determine the
number of page frames for a process. m
= Working set at t: the set of pages
referenced in (t-w, t).

= Replacement: any page in memory but not in
any process’s WS is a candidate.

w=0123012301234567

' # of frames

t-w t
(w: window size)

(Stonebraker)

Problems with OS Buffer Pool Management

(toss immediately)

= LRU Replacement
= Database access pattern in INGRES
1. Seq. access to blocks which will not be revisited.
2. Seq. access to blocks which will be cyclically revisited(MRU)
3. Random access to blocks which will not be revisited.
4. Random access to blocks which will possibly be revisited.(LRU)

= Prefecth rules

DB knows what's next, but next block is not necessarily
the next one in logical file order.

Previous Buffer Management Ideas
("Bad” algorithms)

m Domain separation (Reiter 76)
m "New" algorithm (Kaplan 80)
m Hot Set (Sacco and Schkolnick 82)

Domain Separation (page-oriented)

Type 1
m Root page of the B-tree is more
important. Type 2
m Pages are classified into types, each
of which is separately managed in its Typei
associated domain of buffers.
m Borrow
m Inside each domain: LRU
buffer

Domain Separation

Type 1

A simple type assignment.
8-10% improvement than LRU.
Limitation: Type 2
= Static, the importance of page may vary
in different queries.
= Does not differentiate importance between types. Type 3
m Conclusion:

= No better than global algo’s, such as LRU and
CLOCK. (Effelsberg and Haerder)

buffer

Old Algorithms and QLSM

“New"” Algorithm

m Based on two observations:
1. The priority of a page is a property of the
relation to which it belongs;
2. Each relation needs a “working set”.

Dazhi Wang
m Buffer pool is subdivided and allocated
on a per-relation basis
“New” Algorithm “New"” Algorithm
m Algorithm: m Pro:

» Each active relation is assigned a resident

set which is initially empty.

= A new approach that tracks the locality of
a query through relations.

» The resident sets of relations are linked in GF m Con:
a priority list; Unlikely reused relations = The use of MRU is justifiable only in
areneartop.) . limited cases.
= Ordering of relation is pre-determined, = The rules for ordering relations were
and maybe adjusted subsequently. based on intuition.
= Search from top of the list ——R3 = Searching a list can be expensive under
= Within each relation: MRU. high memory contention.
= Hard to extend to multi-user environment
7 5
. R1xR2 .
Hot Set Algorithm ., Hot Set Algorithm
m Hot set (query behavior): i = Pro:
t of ver which o
" ase _0 pages. ove c Hot point m Provides more accurate reference pattern.
there is a looping behavior. Buffer size s Con:
m Hot point: points of discontinuity. ' o .
P P } y R1 m Based on LRU, which is inappropriate for
e.g.: R1x R2, hot point=1+P(R2)=6 certain looping behavior.
where, R2 is inner loop. Ro
m assign buffer for each query based
on hot points; within a buffer, LRU.

buffer

QLSM: The Query Locality Set Model

m Based on the observation:

= Relational database systems support a limited set
of operations

» Reference patterns are regular and predictable

= The reference patterns can be decomposed into
simple reference patterns

m Reference pattern classification
= Sequential Reference
= Random Reference
m Hierarchical reference

Sequential Reference

m Straight Sequential(SS): sequential scan without
repetition

= e.g. selection on an unordered relation

m Clustered Sequential(CS): local rescan in the course of a
sequential scan

Tablel:1 2 2 3

" ©0-Mergelon ropie2:0 2 2 2 5

m Looping Sequential(LS): sequential reference be repeated
several times

= e.g. nested loop join

Random Reference

m Independent Random(IR): genuinely
random accesses

m e.g. access data pages through a non-clustered
index scan

m Clustered Random(CR): random accesses
which demonstrate locality
= e.g. join
— Inner table: non-clustered, non-unique index
— Outer table: clustered, non-unique keys

Hierarchical reference

m Straight Hierarchical(SH): traverse the
index only once

» Hierarchical/Straight Sequential(H/SS):

traversal followed by straight sequential scan.

m Hierarchical/ Clustered Sequential (H/CS):
traversal followed by clustered sequential scan.

m Looping Hierarchical(LH): Repeatedly
traverse an index.

= e.g. join in which the inner relation is indexed on
the join field

DBMIN Algorithm

Jing Zhang

DBMIN

A buffer management algorithm based on
the QLSM.

m Per-file buffer management.

m Each file has a locality set-the set of
buffers referenced for that file.

m Manage each locality set by the access
pattern for that file.

Parameters

m N: total number of buffers(page frames)

m |;: max number of buffers for file
instance j of query i (desired size)

m r;:number of buffers allocated for file
instance j of query i (actual size)

DBMIN-Algorithm

m Initialize all buffers on global free list

m Initialize all locality sets empty with both
I(maximum number of buffers allocated to a
query for a particular file) and r(the number
of buffers currently allocated to a query for a
particular file) to 0.

m If a page is found in both the global and
locality set, update usage stats.

DBMIN-Algorithm(Cont.)

m If the page is in memory, but not local set,
add it to locality set(if it doesn't belong to
someone else), increment r, and if r>1, evict
a page according to the pattern for this pool.

m If the page isn’t in memory, read it into a free
buffer and proceed as in memory above.

m On file open/close, do load control:

(Open): if .2 /jj <N, query can proceed, o/w

blocks Y

(Close): release buffers to free list, unblock one
or more other queries

Local algorithms

m SS

m Sizeis 1

= Replace page as needed
m CS

m Size equal (#tuples in largest cluster)/(# of tuples per

page).
= Replacement is LRU or FIFO
mLS
m Size equal size of file(relation)
= Replacement is MRU

Local algorithms(Cont.)

m IR

= Replacement is whatever you want

m Size is either 1 or threshold(b)
b: the total number of pages referenced
k: the number of random record accesses

e.g.: r=k-b/b, r: residual value

if r<=p, size=1(p is the threshold which a page

is considered to have a high probability to be re-
referenced).

otherwise, size=b

Local algorithms(Cont.)

= CR
= Size is the size of the # of tuples in largest cluster
= Replacement is LRU/FIFO

m SH, H/SS
= Sizeis 1
= Replacement is MRU
m H/CS
= Similar as CS
= Each member in a cluster is a key-pointer rather than a data
record
m LH
= Size is 3-4(roughly h)
= Replacement is LIFO

Evaluations, Results and
Conclusions

By
Junyi Xie

Evaluation Methodology

m Hybrid Simulation Model

= Trace-driven simulation
= Describe the behavior of individual query
= Traces recorded from a real system

» Distribution-driven simulation
= Events generated randomly
= Synthesize the system workload

= Combination of trace-driven and distribution-

driven simulations

= System Workload: described by merging all traces
= Individual query: described by a trace string

Query CPU Disk Memory
Type Demand Demand Demand
WO rkloads 1 Low Low Low
I Low High Low
m Predefined Query Mixes ul | High | Low | Low
n Query Mix 1 - M1 v High High Low
= All six query types are v High | Low | High
equally requested vi High | High | High
n Query Mix 2 — M2 Query Classification
= I and II are chosen half of the time
= Query Mix 3 — M3
= I and II have a combined probability of 75%
Query Typel | TypeIl | Typelll | Typelv | TypeV | Type VI
Mix
M1 16.67 | 16.67 16.67 16.67 16.67 16.67
M2 25.00 | 25.00 12.50 12.50 12.50 12.50
M3 37.5 37.5 6.25 6.25 6.25 6.25 (in %)

Experiments Set One

m Configuration

m Metrics:
= System throughput measured by queries

completed per second under certain number of

concurrent queries
= No Data Sharing
= Every query has its own copy of data
= No Load Control

Simulation Results

Query Mix One: all queries equally distributed

056 C{FGHPUT DBMIN
0.40 4 Sharp degradation! !
o0.30 @ R e T
oS ¥ vorser
0.20 | \ e
0.10 . & RAND, FIFO, CLOCK, WS
Thrashing!
o.00 Neq

o 4 5] 12 186 =20 24 =28 32
QUERY MIX M1 (100 BUFFERS, NO DATA SHARING)

Simulation Results

Query Mix Two: I + II = 50%

THROUGHPUT

0.50 4
[Thrashing again! DBMIN
1

0.40 WS becomes much better! /
.30 HOT SET
0.20 K—-___.

o N v ws

~.
o.10 4 2 cLoCK
Still the worst!
RAND, FIFO

0.00 NeQ

o 4 8 12 16 20 24 28 32
QUERY MIX M2 (80 BUFFERS, NO DATA SHARING)

Simulation Results

Query Mix Three: I + II = 75%

THROUGHPUT i i
0.50 Thrashing again!

&« DBMIN
\ HOT SET

0.30 -~ ws
<
Clockisa 1
0.20 little better AN WS becomes even better!
o.10
Worst once more! RAND, FIFO
0.00 Nea

o a 8 12 16 20 24 28 32
QUERY MIX M3 (60 BUFFERS. NO DATA SHARING)

Simulation Results

m DBMIN wins in ALL cases!

m Thrashing always occurs in FIFO, Rand and
Clock.

m Performance degradation associated with
FIFO, Rand and Clock.

m Rand and FIFO yield the worst performance,

m WS does not perform well in M1

= but improved in M2, M3 where query type I, II
increased.

Experiments Set Two

m Effect of Data Sharing

m Half Sharing:
» Every two queries share a copy of data

m Full Sharing
n All queries share a copy of data

= No Load Control
m Metrics:
» Throughput measured by queries/second

Simulation Results

Looks like no data sharing Totally different!

Half sharing Vs Full Shafing, on Query]/ﬁx 3
DI

THROUGHPUT THROUGHFUT BMIN is the best again!
0.60 0.80

NN

% <€—— No thrashi

010 030 Rand, FIFO are the worst
For each algorithm, the performance increases
N o20 NCQ
9 4 8 R 18 B B B 0 4 8 12 16 20 26 28 32
QUERY MIX M3 (60 BUFFERS, HALF DATA SHARING) QUERY MIX M3 (0 BUFFERS, FULL DATA SHARING)

ng!

.40

Simulation Results

m Data sharing increases the performance for
ALL algorithms.

m It eliminates thrashing, which is evident in
the cases of no data sharing and half data
sharing.

m DBMIN achieves the highest performance in
data sharing.

m Rand and FIFO always perform the worst.

Experiments Set Three

m Effect of Load Control
= What: Mechanism to check the usage of resources
to prevent system from overloading
= Why: To eliminate the thrashing.
= How: "50% rule” — empirical
= When page is kept busy about half of time, we get best
performance
= Feedback load controller
= Estimator: measures utilization of pages
= Optimizer: decides load adjustment to take

= Control switch: activates/deactivates queries according to
decisions from optimizer

Simulation Results

Feedback load control of Query Mix 1

THROUGHPUT
0.50

DBMIN is the best ——

\ Clock comes close to Hot set

WS becomes the worst!
0.00 NCQ
o 4 8 12 16 20 24 28 32
QUERY MIX M1 (100 BUFFERS. NO DATA SHARING)

Feedback Load Control

m Pros
m Increase performance of simple algorithms
= FIFO, Rand, Clock
m Cons
= Runtime overhead
= Estimator, optimizer, control switch
= Non-predictive
= Only respond after undesirable condition occurs

Conclusion

m DBMIN wins in ALL cases
= Followed by Hot set, Clock, WS.
= Rand and FIFO do not work well at all.

m Data Sharing can increase the performance,
eliminate thrashing, but DBMIN and Hot set
still win.

m Load control makes simple algorithms
outperform WS, but there are problems with
load control (overhead, non-predictive).

Weakness

m DBMIN needs to predict usage of file instance
m But, is it predictable?

m In the case of multiple users
» If all requirements can not satisfied, what to do?

= Delay one(who)? — How to be fair?
» Or Let them all suffer? — Is that fair?

m Each file instance is considered independently

= So how to make use of the locality across file
instance?
= Across file accesses with one query

Question?

