
1

“Generalized Search Trees for
Database Systems”

by Joseph M. Hellerstein, Jeffrey F. Naughton,
and Avi Pfeiffer

Andy Danner
Sara Sprenkle
CPS216
October 9, 2001

October 9, 2001 CPS216

Motivation
� Extensible data and query models� Ease construction of index structures for new

data and query types� adding new data types� Generalized tree structure for database
systems� maintaining data and asking queries

October 9, 2001 CPS216

Outline
� Motivation� Generalized Search Trees (GiST)� Algorithms� Applications� GiST Limitations, Extensions� Conclusions

October 9, 2001 CPS216

Generalizing DB Search Trees

� � � � � � � 	
 � � � �

� Balanced tree� High fanout� Keys � predicates, may overlap

� � � � � ! � " # $ % & ' � ! $ % " ()
(! � (�

October 9, 2001 CPS216

Generalizing DB Search Trees

* Generalized search key+ any arbitrary predicate that holds for each
datum below the key+ flexible , arbitrary nested subcategories- Database search tree:. “hierarchy of partitions of a data set, in which
each partition has a categorization that holds
for all data in the partition”

October 9, 2001 CPS216

Running Example: Images

/ 0 1 2 < 3 4 5 3 4 5 6 7 8 9 : < ; < = >

? @ A B C D A E F G H I G J K L M N O P Q R S T R U V W V X
Y Z W Y [P T P [[M N Y Z W Y [P R S [Z P \] ^ ^ _ ` a b c]] d

e f g h i h j k l m i n i h o p q n r m p s p s f t h u v w p n x i v f w y p z u g{ | } ~ � { | � � ~ � � { � � � ~ � �

2

October 9, 2001 CPS216

Properties

� Internal nodes (other than the root) have
between kM and M index entries� k: minimum fill factor, < ½ � entry: (key/predicate, pointer)

� � � � � � � � � � � � � � � � � � �

October 9, 2001 CPS216

Properties

� Internal nodes (other than the root) have
between kM and M index entries� Root has at least two children unless it is a
leaf node� All leaf nodes appear on same level�
Balance tree�
Bound height of tree

October 9, 2001 CPS216

Properties
� Leaf node predicates evaluate to true given

values of data instance

� � � � �
� � � � �

� � � � �

October 9, 2001 CPS216

 ¡ ¢ � £ ¤ ¤

Properties
� Internal predicates evaluate to

true for all data instances in
subtree�
May not have hierarchical
satisfiability of predicates like
R-trees

� � �
� � �

October 9, 2001 CPS216

Images

 ¥ ¦ ¤
<

� § ¨ � § ¨ © ¥ ¦ ¤
< ª § ¨ �

¥ « � ¬ ¤ ® ¯ ° � � ¥ ° � ¡ £ � ± ¤ � �
� ¡ £ � ± ¤ ² ¤ ± ± ¯ ³

October 9, 2001 CPS216

Key Methods
� Methods used by GiST to maintain invariants� Implemented by index developer� Application-specific policies

3

October 9, 2001 CPS216

Key Methods

´ Consistent(Entry E, Predicate q)´ Union(Entry E[])´ Compress(Entry E)´ Decompress(Entry E)´ Penalty(Entry E1, Entry E2)´ PickSplit(Entry E[])

October 9, 2001 CPS216

Key Methods

´ Recall: Entry is (predicate p, pointer ptr)´ Consistent(Entry E, Predicate q)µ returns false if p AND q are guaranteed
unsatisfiableµ determines which tree(s) to searchµ false positives but no false negatives

October 9, 2001 CPS216

Image Search

¶ · ¸ ¹ < º » ¼ º » ¼ ½ ¶ · ¸ ¹ < ¾ » ¼ ¿

À Á Â Ã Ä · Â ¶ Å Æ Ç È Æ É ¹ ¿ Á Ê Â ¹ Ë Å Ì Í Å Î Ä È Ä ¿
Æ Ç È Æ É ¹ Í ¹ É É Á Ê

Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ñ Ù Ú Û Ñ Ü Ý Þ × Ý ß à á Ý × Ú á â Ð Ò â Û Ñ

ã ä å æ ç æ è é å è ê ä ë ì ä è í î ï è í æ

î ð ë î ñ é ò ì ñ ð é ó é ñ ñ ä ô ò õ ë é é å

October 9, 2001 CPS216

Key Methods

ö Union(Entry E[])÷ predicates from a set of entries are merged
into one predicate

ø ø ù ø ú û ø ü

ý þ ÿ � � � � � �

� � � � �

� � � � 	 � � � �

October 9, 2001 CPS216

Key Methods

 Compress(Entry E)� compressed representation of predicate p

October 9, 2001 CPS216

B+-tree Compress

� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � ! � �

" # $ % " & " ' (%)

* � � � * � � � + , - . / 0 1 1 2 , 3 4 5 / , - . 6 . 0 /

4

October 9, 2001 CPS216

B+-tree Compress #2

7 8 9 : ; < 8 = 8 > ? ; @ 7 8 = 8 > ? ; < 8 = = : ; @ A
B C D E F G H H E F G I J B K L G H

8 9 : ; 8 = 8 A

M C H H M G H H B C D E F G H H J C N

8 9 : ; 8 = 8 8 = 8 > ? ; 8 = = : ;
O P Q R S T U V W X Y Z Z R U [R \ [U S P] P ^ P W P _ P W P T ` Y a

October 9, 2001 CPS216

B+-tree Compress #3

^ P b Q Y _ P W P T ` Y a ^ P W P T ` Y _ P W W Q Y a c
d e f g h i j j g h i k l d m n i j

^ P b Q Y _ P W W Q Y a ^ P b Q Y _ P W W Q Y a c

o e j j p d e f g h i j j l e q

October 9, 2001 CPS216

Key Methods

r Decompress(Entry E)s π = compressed(p)s r = uncompress(π), p t rs potentially lossy
• do not require p iff r

October 9, 2001 CPS216

Key Methods

r Penalty(Entry E1, Entry E2)s penalty for inserting E2 into E1’s subtree
• local not global penaltys used for deciding where to insert entries or

where to split a predicates R-tree examples t minimizing increased
area, minimizing overlap, minimizing
perimeter

October 9, 2001 CPS216

Key Methods

r PickSplit(Entry E[])s splits set of entries E into two sets of entries,
each with ~kM entriess may or may not use badness metric (e.g.,
multi-way penalty) to determine how to split
entries

October 9, 2001 CPS216

Outline

r Motivationr Generalized Search Trees (GiST)r Algorithmsr Applicationsr GiST Limitations, Extensionsr Conclusions

5

October 9, 2001 CPS216

Algorithms

u Searches, inserts, and deletes are based on
the implemented key methodsv generic algorithms for updating and accessing

index structuresv application-specific information is extracted
into key methodsu Algorithms are handled by GiST, not defined

by user

October 9, 2001 CPS216

Algorithm: Search
u Search(GiST R, Predicate q)v start at rootv go down path or paths where key predicates

are consistent qv reach leaf w final consistency checkv return array of objects or array of object
pointersu Only use Consistent key methodu Generalization x exact match, range queries

October 9, 2001 CPS216

Image Search

y z { | < } ~ � } ~ � � y z { | < � ~ � �

� � � � � z � y � � � � � � | � � � � | � � � � � � � � � �
� � � � � | � | � � � �

� � � � � � � � � � � � � � � � ¡ � ¢ £ ¤ � � ¤ ¥ � � ¥ � �

� � � y z y � | � � ¦ � � � � � § � � � § y

� � � � � | � � � � | � | � � � � � ¨ � | | �

October 9, 2001 CPS216

Algorithm: Insert

u Insert(GiST R, Entry E)v start at rootv find leaf where E should be inserted
• may require choosing among several different

subtrees at each level along pathv insert Ev may require splitting leaf node and
propagating/adjusting keys up the tree

October 9, 2001 CPS216

Algorithm: Choose Subtree

u Calculate penalty of inserting entry in subtreev domain-specific penaltyv minimize penalty locally not globally

October 9, 2001 CPS216

R-tree Insert

u Insert R9 into R-treev pick a region containing R9 and follow the child
pointer

© ª «
¬ ® ¯ ° ¯ ±

² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½
¾ ¿

¾ À

¾ Á
¾ Â

¾ Ã ¾ ½

¾ Ä ¾ Å

¾ Å Æ

¾ Ç

6

October 9, 2001 CPS216

Algorithm: Split

È Union on new elements É create a new keyÈ Modify old key É reduce overlap, tighter
controlÈ Adjust keys up touched path

October 9, 2001 CPS216

Algorithm: Delete

È Delete(GiST G, Predicate q)Ê find element based on q
• constrain query to return one elementÊ deleteÊ maintain balance, invariants up tree

October 9, 2001 CPS216

Outline

È MotivationÈ Generalized Search Trees (GiST)È AlgorithmsÈ ApplicationsÈ GiST Limitations, ExtensionsÈ Conclusions

October 9, 2001 CPS216

Applications

È GiST confines application specific code to six
key methodsÈ Implementing a new tree only requires coding
of key methods. GiST handles insert, delete
and searchÈ Paper discusses B+, R and RD Tree
implementations

October 9, 2001 CPS216

Application: B+-tree

È Contains([x, y), v)Ê If x Ë v < y, return true; otherwise, return falseÌ Equal(x, v)Í If x = v, return true; otherwise, return false

October 9, 2001 CPS216

Application: B+-tree
Ì Consistent(E, q)Í If p=Contains([xp,yp),v) AND

q=Contains([xq,yq),v), return true if (xp<yq) AND
(yp>xq), false otherwise Í If p=Contains([xp,yp),v) AND q=Equal(xq,v),
return true if xp Ë xq<yp, false otherwiseÌ Union({E1, …, En})Í Ei=([xi,yi), ptri)Í return [Min(x1, …, xn), Max(y1, …, yn))

7

October 9, 2001 CPS216

Application: B+-tree

Î Compress(E=([x, y), ptr))Ï Return x, unless E is the leftmost key on an
internal node (return a 0-byte object)Î Decompress(E=(π, ptr))Ï Construct an interval [x, y)Ï If E is leftmost key in internal node, x = − Ð ;
otherwise, x = πÑ If E is rightmost key in internal node, y = Ð ;
otherwise, y = nextKey();

October 9, 2001 CPS216

Application: B+-tree

Ò Penalty(E = ([x1,y1), ptr1), F = ([x2,y2), ptr2))Ñ If E is leftmost pointer on its node,
return Max(y2 – y1, 0)Ñ If E is rightmost pointer on its node,
return Max(x1 – x2, 0)Ñ Otherwise,
return Max(y2 – y1, 0) + Max(x1 – x2, 0)

October 9, 2001 CPS216

Application: B+-tree
Ò PickSplit(P)Ñ P = { E1, …, En }Ñ Ei < Ej for i < jÑ Return P1 = { E1, …, Efloor(n/2) } and

P2 = { Eceiling(n/2), …, En }Ñ Guarantees a minimum fill factor of M/2

October 9, 2001 CPS216

Outline
Ò MotivationÒ Generalized Search Trees (GiST)Ò AlgorithmsÒ ApplicationsÒ GiST Limitations, ExtensionsÒ Conclusions

October 9, 2001 CPS216

GiST Limitations/Extensions
Ò Aggregate queriesÒ Nearest-neighbor, i.e., “like” queriesÑ both addressed in “Generalizing ‘Search’ in

Generalized Search Trees”, ICDE 1999Ò Concurrency, recovery implementationÑ naïve: strict 2PLÑ addressed in “Concurrency and Recovery in
Generalized Search Trees”, SIGMOD 1997

October 9, 2001 CPS216

GiST Conclusions
Ò Identify the fundamentals of search treesÒ One ADT describes many search trees, e.g.

B+-tree, R-tree, etc.Ò Allows extensible data and query types

8

October 9, 2001 CPS216

Discussion

Ó Questions?Ó Time for quiz!

October 9, 2001 CPS216

Quiz

Ô Define a GiST. What are its primary benefits?Ô Would you use a GiST to implement a new DB
search tree? Specifically, consider ease of
implementing your tree. What are the tradeoffs?Ô What is Sara’s favorite color?Ô By how much did this presentation improve your
understanding of GiST?
Scale: [1. more confused than ever, 5. damn-
near an expert]

