“Generalized Search Trees for
Database Systems”

by Joseph M. Hellerstein, Jeffrey F. Naughton,

and Avi Pfeiffer
Andy Danner
Sara Sprenkle
CPS216
October 9, 2001

Generalizing DB Search Trees

e Balanced tree
e High fanout
e Keys - predicates, may overlap

o keyl key2 ...
Internal Nodes (directory)
| Leaf Nodes (linked list) |
l to data l

October 9, 2001 CPS216

Motivation

e Extensible data and query models

e Ease construction of index structures for new
data and query types
» adding new data types

e Generalized tree structure for database
systems
» maintaining data and asking queries

October 9, 2001 CPS216

Generalizing DB Search Trees

e Generalized search key

» any arbitrary predicate that holds for each
datum below the key

> flexible>arbitrary nested subcategories
e Database search tree:

> “hierarchy of partitions of a data set, in which
each partition has a categorization that holds
for all data in the partition”

October 9, 2001 CPS216

Outline

e Motivation

e Generalized Search Trees (GiST)
e Algorithms

e Applications

e GiST Limitations, Extensions

e Conclusions

October 9, 2001 CPS216

Running Example: Images

| size<10K 10K <size<50K .. |

.

| contains_EurpIe owned_by_Sara

]]
ﬁ yel+ow i yellieen

Warning: This index scheme may not be suitable for
indexing real images.

October 9, 2001 CPS216

Properties

e Internal nodes (other than the root) have
between kM and M index entries

» k: minimum fill factor, < 2
» entry: (key/predicate, pointer)

| keyl key2 ... keykM

/] }

October 9, 2001 CPS216

Properties

e Internal predicates evaluate to
true for all data instances in
subtree

> May not have hierarchical
satisfiability of predicates like

October 9, 2001 CPS216

Properties

e Internal nodes (other than the root) have
between kM and M index entries

e Root has at least two children unless it is a
leaf node

e All leaf nodes appear on same level
» Balance tree
> Bound height of tree

October 9, 2001 CPS216

Images
| size <10K 10K < size <50K .. |
| image_contains_purple ... | | . |
yellow

October 9, 2001 CPS216

Properties

e Leaf node predicates evaluate to true given
values of data instance

October 9, 2001 CPS216

Key Methods

e Methods used by GiST to maintain invariants
e Implemented by index developer
e Application-specific policies

October 9, 2001 CPS216

Key Methods

e Consistent(Entry E, Predicate q)
e Union(Entry E[])

e Compress(Entry E)

e Decompress(Entry E)

e Penalty(Entry E1, Entry E2)

e PickSplit(Entry E[])

October 9, 2001 CPS216

Key Methods

e Union(Entry E[])

» predicates from a set of entries are merged
into one predicate

[t 101 251 .| [5 251

N [\

L7

53 | [101 197] [7 53 101 197]

e

October 9, 2001 CPS216

Key Methods

e Recall: Entry is (predicate p, pointer ptr)
e Consistent(Entry E, Predicate q)

» returns false if p AND g are guaranteed
unsatisfiable

» determines which tree(s) to search
» false positives but no false negatives

October 9, 2001 CPS216

Key Methods

e Compress(Entry E)
» compressed representation of predicate p

October 9, 2001 CPS216

Image Search

Query: Image files that contain purple

| size<10K 10K <size<50K .. |

consistent for both paN

|contains_f>urp|e | | owned_by Sara ... |

yel+ow ﬁ yellieen

October 9, 2001 CPS216

B+-tree Compress

lossless compression, from paper

|[ab|e apache) [apache, apple) .

less pmlLes

able apache

October 9, 2001 CPS216

B+-tree Compress #2

lossless compression

|[ab|e apache) [apache, apple) .

iss pies

able
Valid compre55|on if no data [apa apache)

| able apa apache apple |

October 9, 2001 CPS216

Key Methods

e Penalty(Entry E1, Entry E2)
» penalty for inserting E2 into E1's subtree
« local not global penalty

» used for deciding where to insert entries or
where to split a predicate

» R-tree examples = minimizing increased
area, minimizing overlap, minimizing
perimeter

October 9, 2001 CPS216

B+-tree Compress #3

lossy compression

|[ab|e apache) [apache, apple) |

E S =

[able apple) [able, apple) ... |

October 9, 2001 CPS216

Key Methods

e PickSplit(Entry E[])
> splits set of entries E into two sets of entries,
each with ~kM entries

» may or may not use badness metric (e.g.,
multi-way penalty) to determine how to split
entries

October 9, 2001 CPS216

Key Methods

e Decompress(Entry E)
» 1= compressed(p)
» I = uncompress(m), p>r
» potentially lossy
« do not require p iffr

October 9, 2001 CPS216

Outline

e Motivation

e Generalized Search Trees (GiST)
e Algorithms

e Applications

e GiST Limitations, Extensions

e Conclusions

October 9, 2001 CPS216

Algorithms

e Searches, inserts, and deletes are based on
the implemented key methods

» generic algorithms for updating and accessing
index structures

» application-specific information is extracted
into key methods

e Algorithms are handled by GiST, not defined
by user

October 9, 2001 CPS216

Algorithm: Insert

e Insert(GiIST R, Entry E)
» start at root
» find leaf where E should be inserted

* may require choosing among several different
subtrees at each level along path

»insert E

» may require splitting leaf node and
propagating/adjusting keys up the tree

October 9, 2001 CPS216

Algorithm: Search

e Search(GIiST R, Predicate q)
» start at root

» go down path or paths where key predicates
are consistent g

» reach leaf = final consistency check

» return array of objects or array of object
pointers

e Only use Consistent key method
e Generalization - exact match, range queries

October 9, 2001 CPS216

Algorithm: Choose Subtree

e Calculate penalty of inserting entry in subtree
» domain-specific penalty
» minimize penalty locally not globally

October 9, 2001 CPS216

Image Search

Query: Image files that contain purple

| size<10K 10K <size<50K .. |

consistent for both paN

|contains_f>urp|e | | owned_by Sara ... |

yel+ow ﬁ yellieen

October 9, 2001 CPS216

R-tree Insert

e Insert Ry into R-tree

» pick a region containing Ry and follow the child
pointer

RsRY R,

October 9, 2001 CPS216

R

Algorithm: Split

e Union on new elements - create a new key

e Modify old key - reduce overlap, tighter
control

e Adjust keys up touched path

October 9, 2001 CPS216

Applications

e GiST confines application specific code to six
key methods

e Implementing a new tree only requires coding
of key methods. GiST handles insert, delete
and search

e Paper discusses B+, R and RD Tree
implementations

October 9, 2001 CPS216

Algorithm: Delete

e Delete(GIiST G, Predicate q)
» find element based on g
« constrain query to return one element
» delete
» maintain balance, invariants up tree

October 9, 2001 CPS216

Application: B+-tree

e Contains([x, y), V)

» If X < v <Yy, return true; otherwise, return false
e Equal(x, v)

> If x = v, return true; otherwise, return false

October 9, 2001 CPS216

Outline

e Motivation

e Generalized Search Trees (GiST)
e Algorithms

e Applications

e GiST Limitations, Extensions

e Conclusions

October 9, 2001 CPS216

Application: B+-tree

e Consistent(E, q)
> If p=Contains([x,,y,),v) AND
g=Contains([x,,y,),v), return true if (x,<y,) AND
(Yp>Xy), false otherwise
> If p=Contains([x,,Y,),v) AND g=Equal(x,,v),
return true if X, <x,<y,, false otherwise
e Union({E,, ..., E.}})
> E=([%,Yy), ptr)
> return [Min(xy, ..., X,), Max(yy, ..., ¥,)

October 9, 2001 CPS216

Application: B+-tree

e Compress(E=([x, y), ptr))
» Return x, unless E is the leftmost key on an
internal node (return a 0-byte object)
e Decompress(E=(m, ptr))
» Construct an interval [X, y)
» If E is leftmost key in internal node, X = —co;
otherwise, x =1
» If E is rightmost key in internal node, y = co;
otherwise, y = nextKey();

October 9, 2001 CPS216

Outline

e Motivation

e Generalized Search Trees (GiST)
e Algorithms

e Applications

e GiST Limitations, Extensions

e Conclusions

October 9, 2001 CPS216

Application: B+-tree

e Penalty(E = ([x;,Y,), ptry), F = ([X,,¥,), ptry))
» If E is leftmost pointer on its node,
return Max(y, —y,, 0)
> If E is rightmost pointer on its node,
return Max(x, — X,, 0)
» Otherwise,
return Max(y, —y;, 0) + Max(x, — X,, 0)

October 9, 2001 CPS216

GIST Limitations/Extensions

e Aggregate queries
e Nearest-neighbor, i.e., “like” queries

> both addressed in “Generalizing ‘Search’ in
Generalized Search Trees”, ICDE 1999

e Concurrency, recovery implementation
> naive: strict 2PL

» addressed in “Concurrency and Recovery in
Generalized Search Trees”, SIGMOD 1997

October 9, 2001 CPS216

Application: B+-tree

e PickSplit(P)
»P={E, ... E;}
»E<E fori<j
»Return Py ={ E,, ..., Egoormizy } @Nd
P, ={ Eceilngrizy -+ En}
» Guarantees a minimum fill factor of M/2

October 9, 2001 CPS216

GIiST Conclusions

e Identify the fundamentals of search trees

e One ADT describes many search trees, e.g.
B+-tree, R-tree, etc.

e Allows extensible data and query types

October 9, 2001 CPS216

Discussion

e Questions?
e Time for quiz!

October 9, 2001 CPS216

Quiz

e Define a GiST. What are its primary benefits?

e Would you use a GiST to implement a new DB
search tree? Specifically, consider ease of
implementing your tree. What are the tradeoffs?

e What is Sara’s favorite color?

e By how much did this presentation improve your
understanding of GiST?

Scale: [1. more confused than ever, 5. damn-
near an expert]

October 9, 2001 CPS216

