
1

Eddies: Continuously Adaptive
Query Processing

by Ron Avnur and Joseph M. Hellerstein

Danielle Cusson, Andy Hsieh, Andy Huang

CPS 216
11/13/01

Introduction

� Large-scale query engines (WANs, clusters) must be able to
perform robustly under changing conditions

� Telegraph is a system being developed to provide distributed
query processing in a WAN or parallel processing in a large
cluster with efficiency and flexibility

� Query processing parameters can change many times during a
single query, so traditional means of query optimization and
static execution are not sufficient

� Query plans need to be re-optimized during the course of query
processing

Complexity Challenges
� Hardware and Workload Complexity:

– Often WANs provide bursty performance because large
groups of users have aggregate behavior which is hard to
predict and because of hardware performance

� Data Complexity:
– It's not difficult to estimate selectivity for static alpanumeric

data, complex data is more difficult but doable
– Dynamic complex data in federated systems is common, but

traditional static selectivity estimates are not accurate
� User Interface Complexity:

– In systems of large scale, queries run for a long time
– there is work on techniques which allow users to "control"

properties of queries while they execute allowing them to
refine approximate results

Runtime Fluctuations During Query Processing

� Costs of operators
� Tuple arrival rate
� Selectivities

– Runtime variation in selectivity
is normal

– Suppose the selection is Salary
> $200,000 for the following
relation

– Age and Salary are correlated,
so initially the selection will filter
out most of the tuples, but as
older employee tuples are
reached selectivity rate will
increase

Age Salary Employee ID
#

22 75,000 12345

32 125,000 23456

42 175,000 34567

52 250,000 45678

Architectural Assumptions

� A naïve pre-optimizer will be used to construct the
initial query plan, but the plan that it produces is not
significant because the plan tree will be reordered at
runtime

� A standard single-node object-relational query
processing system which is able to operate with
external tables (similar to DB2, Informix, etc.) is used
to study Eddys

Reordering of Query Plans

� Challenge: change query plans on the fly while
preserving state

� Problematic Example: the state of hybrid hash join
can be as large as the size of a relation, and can
require recomputation if the query plan is modified
during state construction

� Philosophy: favor adaptivity over best-case
performance
– This is ok because the environment varies, and it is not likely

that the best-case scenario will exist for a significant length
of time.

2

Synchronization Barriers

� A synchronization barrier occurs when one table-
scan must wait until another table-scan produces
a required value

� Example: Merge Join on sorted, duplicate-free inputs
– Each tuple consumed is taken from the relation whose last

tuple had the lower value.
– SlowLow, FastHi relations

� Barriers limit concurrency
� Overhead is caused by both frequency of barriers

and the differences in arrival times of two inputs at a
barrier

Moments of Symmetry

� Moment of Symmetry: When join algorithms reach
synchronization barriers, scheduling dependency
between the two input relations ends and often the
order of the inputs can be changed without disturbing
the state of the join

� Merge Join: MoS at any time, symmetric
� Nested Loops Join: MoS at the end of each inner

loop, asymmetric
� Hybrid Hash Join: no MoS

Commutativity and Reordering Issues

� Natural joins commute, therefore a tree of n-1 binary
joins can be considered a single n-ary join

� The binary joins are not required to be the same join
algorithm, although they must commute

� Certain cases such as index nested-loops join or
algorithms which only work for certain types of joins
place constraints on the reordering of the query plan,
in this work these constraints are adhered to

Join Algorithms for Dynamic Reordering
� The best join algorithms for dynamic reordering

provide:
– Frequent Moments of Symmetry
– Adaptive or non-existent barriers
– Minimal ordering constraints

� Ripple Join family provides best adaptivity:
– Pipelined Hash Join (aka hash ripple, Xjoin)

• No synchronization barriers
• Continuous symmetry
• Good for equijoin

– Simple (or Block) Ripple Join
• Synchronization barriers at corners
• Moments of Symmetry at corners
• Good for non-equijoin

River

� A dataflow, multithreaded query engine,
analogous to many commercial parallel
database engines

� Contain module (query operators)
communicate via a fixed dataflow graph
(query plan)

� Each module runs as independent thread
� Can exploit barrier-free algorithms by reading

from various inputs at independent rates

Pre-Optimization

� Initial optimizer to construct spanning
tree and algorithms used in each join

� Later will use eddies to reorder tables
among joins

3

Eddy in River

� Implemented via a module in a river
� Arbitrary number of input relations, a number of unary

and binary modules, and a single output relation
� Merge multiple unary and binary operators into a

single n-ary operator
� Fixed-sized buffer of tuples to be processed by one

or more operators
� Each operator takes one or two inputs
� Output stream returns tuples to eddy

Ready and Done Bits

� Purpose: preserve ordering constraints while
maximizing opportunities for tuples to follow different
possible ordering of operators

� Ready bits - indicate tuples are eligible to be
operated

� Eddy will only pass a tuple to operator if Ready bit is
on

� Done bits - tuple has been processed
� If all Done bits are on, the tuple is sent to eddy's

output, otherwise send tuple to another operator

Eddy Advantages

� Flexible in shapes of trees: represents the full
class of bushy trees corresponding to the set
of join nodes

� Flexible in reordering operators: no
requirement that all operators in the eddy be
at moment of symmetry except the operator
fetching new tuples

Eddy Routing

� Directs the flow of tuples individually
through various operators to the output

� Priority queue as tuple buffer
� High priority to tuples having Ready bits

set

Eddy Routing (cont’d)

Eddy

Naïve Eddy

� Works well for handling operators with
different costs but same selectivities

4

Naïve Eddy Example (Different Costs, Same Selectivity)

SELECT *
FROM U

WHERE s1() AND s2()

High-cost operator produce tuples slowly, so most tuples are routed
to the low-cost operator first

Naïve Eddy Example (Same Costs, Vary Selectivities)

� Does not work well when selectivity varies

Fast Eddy

� Would like priority scheme to favor operators
based on both consumption and production
rate

� Consumption: based on cost
� Production: product of cost and selectivity
� Lottery Scheduling

– Operator receives a ticket with incoming tuple
– Ticket is debited if tuple is returned by operator
– Operator receiving tuples depends on relative

efficiency of operator at draining tuples

Fast Eddy Example

Joins Eddies and Pipelining Ripple Join Algorithms

� Three –Table Query experiment:
Select *

From R, S, T
Where R.a = S.a

S.b = T.b
– Hash ripple join between R and S with selectivity of 180%
– Index join between S and T with selectivity of 10%

� Results of two eddy schemes and two static join orderings:
– Lottery-based eddy perform nearly optimally
– Naïve eddy perform in between the best and worst static plans

� How about using Hash join between S and T when we vary
selectivity of ST join?

– Results: Lottery-based eddy perform nearly optimally

Joins Eddies and Pipelining Ripple Join Algorithms

� Three –Table Query experiment:
Select *

From R, S, T
Where R.a = S.a

S.b = T.b
– Hash ripple join between R and S
– Hash ripple join between S and T

� Selectivity:
– ST join w.r.t S is 20% in one version and 80% in the other
– RS join predicate w.r.t S is fixed at 100%

� Results of two eddy schemes and two static join
orderings:
– Lottery-based eddy perform nearly optimally

5

Dynamic Fluctuation

� Problem with static performance environment
– Lottery scheme weights all experiences equally
– Observation from distant past affect the lottery as

much as recent observation
� Fix?

– Window Scheme
– Time is partitioned into windows
– Banked tickets and escrow tickets

Dynamic Fluctuation

� 3-table equijoin query example setup
– Two tables are external and used as

“inner” relations
– The third relation has 30,000 tuples
– Two phases in experiment

• Phase 1: One index (I_fs) is fast and I_sf is
slow

• Phase 2: Begin after 30 seconds and two index
swap speed

Dynamic Fluctuation
� Two Index Join

– Slow: 5 second delay
– Fast: no delay
– Toggle after 30 seconds

Dynamic Fluctuation

� What happen when we fix the costs and
modify the selectivity?

Given : two operators of cost C with selectivity swap
between low to hi

Either Static plan : nc + 1/2nc (n is number of tuples)
Optimal dynamic plan: nc
Ratio is: 3:2

� With more operators, adaptively to changes
in selective can become more significant

Delayed Delivery

� What happen when we add an initial delay?
– Eddy even with a lottery and a window-based forgetting

scheme- does not adapt well as it could
� Observation:

– Eddy incorrectly favors the RS join when no tuples are streaming in
� Reason:

– Eddy observes that the RS join doe not produce any output
tuples when given S tuples

– It awards most S tuples to the RS join initially
– ST join is left to fetch and hash T tuples

� Problem:
– Wastes resources that could have been spent joining S

tuples with T tuples during the delay

Related Work

– Late Binding: Dynamic, Parametric
[HP88,GW89,IN+92,GC94,AC+96,LP97]

– Per Query: Mariposa [SA+96], ASE [CR94]
– Competition: RDB [AZ96]
– Inter-Op: [KD98], Tukwila [IF+99]
– Query Scrambling: [AF+96,UFA98]

� Survey: Hellerstein, Franklin, et al., DE Bulletin 2000

Sy
ste

m R
La

te
Bi

nd
ing

Pe
r Q

ue
ry

Com
pe

titi
on

&
Sa

mpli
ng

Int
er

-O
pe

ra
tor

Que
ry

Scra
mbli

ng

Ed
die

s

Ing
re

s D
ECOMP

Frequency of Adaptivity

Fu
tur

e W
or

k

6

Future Work

� Tune & formalize ticket policy
– E.g., Handle delayed sources better
– Joint work w/ Hildrum, Papadimitriou, Russell,

Sinclair
� Competitive Eddies

– Access & Join method selection
– Requires Duplicate Management

� Parallelism
– Eddies + Rivers [AAT+99]

Conclusion

� Eddies: Continuously Adaptive Dataflow
– Suited for volatile performance environments

• Changes in operator/machine peformance
• Changes in selectivities (e.g. with sorted inputs)
• Changes in data delivery
• Changes in user behavior (CONTROL, e.g. online agg)

– Currently adapts join order
• Competitive methods to adapt access & join methods?

� Requires well-behaved join algorithms
– Pipelining
– Avoid synch barriers
– Frequent moments of symmetry

� The end of the runstats/optimizer/executor boundary!
– At best, System R is good for “hints” on initial ticket distribution

