Topic 24: Approximation Algorithms

(Notes 25.0–31.2)

CPS 230, Fall 2001

- Finding solution to NP-complete problem is difficult.
- Two possible approaches.
 - If input is small enough, use exponential algorithm.
 - Otherwise, craft poly-time approximation algorithm.

We’ll look at approximation algorithms for
1. Vertex Cover
2. Traveling Salesman Problem
3. Set Partition Problem

Definitions

- Optimization problem on input of size \(n \).
- \(C^* \) = cost of optimal solution.
- \(C' \) = cost of approximation algorithm’s solution.
- **Ratio Bound:** \(\rho(n) \) such that for input size \(n \)
 \[
 \max \left(\frac{C}{C^*}, \frac{C^*}{C} \right) \leq \rho(n).
 \]
- **Relative Error Bound:** \(\epsilon(n) \) such that
 \[
 \frac{|C - C^*|}{C^*} \leq \epsilon(n).
 \]
 for any \(n \).

Vertex Cover Problem

- Undirected graph \(G = (V, E) \).
- **Vertex cover** of \(G \) is \(V' \subseteq V \) such that for every \((u, v) \in E\), either \(u \in V' \) or \(v \in V' \) (or both).
- **Vertex-cover problem:** find vertex cover of minimum size (optimal vertex cover).
- NP-complete (reduction from CLIQUE; see CLRS).

Example

- Find optimal vertex cover:
A possible solution

- Only solution for this graph.
- How might we approximate a solution to vertex cover problem?

Idea

- Choose vertices of max degree.
- Works for previous example.

Problem

- What about the following graph?

- max-degree strategy gives:

Problem

- Actual optimal solution is:

- Is there a better approximation alg?
Approximation Algorithm

APPROX-VERTEX-COVER(G)
1 $C \leftarrow \emptyset$ \hspace{1em} \triangleright \text{C to be cover}
2 $E' \leftarrow E[G]$
3 \textbf{while} $E' \neq \emptyset$
4 \hspace{1em} \textbf{do} let (u, v) be an arbitrary edge of E'
5 \hspace{2em} $C \leftarrow C \cup \{u, v\}$
6 \hspace{2em} remove from E' every edge incident on
7 \hspace{2em} \hspace{1em} either u or v
8 \textbf{return} C

Vertex Cover Approximation Example

Analysis of Vertex Cover Approximation

- **Correctness**
 - Only remove “covered” edges from E'.
 - **APPROX-VERTEX-COVER** returns a vertex cover.
- **Running Time** is $O(|V| + |E|)$.
Further Analysis

Theorem \textsc{Approx-Vertex-Cover} has ratio bound 2.

Proof
- \(A = \{\text{edges picked in line 4}\}\) (\(A\) is a set).
- No two edges in \(A\) share an endpoint.
- \(|C| = 2 |A|\).
- Optimal cover, \(C^*\) must include at least one endpoint for each edge in \(A\).
- \(|A| \leq |C^*|\).
- Conclude that \(|C| \leq 2 |C^*|\):
 that is, size of approximate cover is at worst twice size of optimal cover!

Traveling-Salesman Problem

- Given: \textbf{complete} undirected graph \(G = (V, E)\).
- Each edge \((u, v) \in E\) has integer cost \(c(u, v)\).
- Each path has an associated cost.

\[
\begin{tikzpicture}
 \node (a) at (0,0) {a};
 \node (b) at (2,2) {b};
 \node (c) at (4,0) {c};
 \node (d) at (1,-2) {d};
 \draw (a) -- (b) node [midway] {1};
 \draw (b) -- (c) node [midway] {1};
 \draw (b) -- (d) node [midway] {2};
 \draw (a) -- (d) node [midway] {1};
 \draw (a) -- (c) node [midway] {2};
 \draw (c) -- (d) node [midway] {3};
\end{tikzpicture}
\]

Traveling-Salesman Problem (TSP):
Optimization: find min-cost hamilt. cycle of \(G\);
i.e., a min-cost cycle visiting each vertex exactly once.
Decision: NP-complete (reduction from \textsc{Ham-Cycle}, see CLRS).

Examples

TSP Approximation Algorithm

Suppose weights satisfy \textbf{triangle inequality}:
\[
c(u, w) \leq c(u, v) + c(v, w)
\]
for all \(u, v, w \in V\)

\[
\begin{tikzpicture}
 \node (a) at (0,0) {a};
 \node (b) at (2,0) {b};
 \node (c) at (2,2) {c};
 \draw (a) -- (b) node [midway] {2};
 \draw (a) -- (c) node [midway] {1};
 \draw (b) -- (c) node [midway] {1};
 \draw (a) -- (b) node [midway] {1};
\end{tikzpicture}
\]

\[
a + b \leq c
\]

TSP is still NP-complete! However...
TSP Approximation Algorithm

APPROX-TSP-TOUR(G, c)
1. select a vertex r ∈ V[G] to be a “root” vertex
2. grow minimum spanning tree T for G from root r using MST-PRIM(G, c, r)
3. let L be the list of vertices visited in preorder tree walk of T
4. return hamiltonian cycle H that visits vertices in the order L

Example

- Find shortest tour for:

- Find MST (with root a).

Example

- Pre-order walk of MST (node first, then children)

- Yielding tour:

- Total distance ≈ 20.44 units.

- Total distance ≈ 24.00 units.
Theorem: Approx-TSP-Tour with triangle inequality has ratio bound 2.

Proof:
- H^* is optimal tour for G.
- T is a MST for $G \rightarrow c(T) \leq c(H^*)$.
- W = full walk of T. $c(W) = 2c(T)$.
- $c(W) \leq 2c(H^*)$.
- H is preorder walk of T. By triangle inequality, $c(H) \leq c(W)$ [why?]
- $c(H) \leq 2c(H^*)$

Best ratio was $\frac{3}{2}$ for long time; now ϵ.

ϵ-Approximation Schemes

- Input of size n and relative error bound $\epsilon > 0$.
- Returns solution with $\frac{|C - C^*|}{C^*} < \epsilon$.
- Polynomial-time Approximation Scheme
 - $O(n^{O(1)})$ time for any constant ϵ.
- Fully Polynomial Time Approximation Scheme
 - Polynomial in both n and $1/\epsilon$ (see CLRS)

Partition Problem

- Given:
 - $S = \{a_1, a_2, \ldots, a_n\}$
 - $a_1 \geq a_2 \geq \ldots \geq a_n$
- Problem: Partition S into $A \cup B$ such that $\max (w(A), w(B))$ is minimized.
- NP-Complete (reduction from 3D matching).
- Can we find a polynomial-time approximation scheme?

Example

<table>
<thead>
<tr>
<th>S:</th>
<th>A:</th>
<th>B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

$w(A) = 15$
$w(B) = 14$
Approximation Scheme

- Let $m = \lfloor \frac{1}{\epsilon} \rfloor$
- Find optimal partition of $S' = \{a_1, a_2, \ldots, a_m\}$ by exhaustive enumeration.
- Consider $a_{m+1}, a_{m+2}, \ldots, a_n$ in turn and add to currently lighter set.

Example

- $\epsilon = \frac{1}{3}$
- $m = 3$
- Partition $\{7, 7, 5\}$

Example Cont.

- Insert 4.

- Insert 3.

- Insert 2.

- Insert 1.

- $w(A) = 15$, $w(B) = 14$.
- What is the running time for this algorithm?
Running Time

- Finding optimal partition of S' takes $O(2^m)$ time.
- Considering each of the remaining elements of S takes $O(n)$ time.
- Total running time is

\[
O(2^m + n) = O(2^{1/\epsilon} + n) = O(n) \text{ for constant } \epsilon
\]

Theorem: Partition produced by approximation scheme has relative error $< \epsilon$.

Proof:

- Let $A' \cup B'$ be an optimal partition of S'.
- Assume $w(A') \geq w(B')$.

Case 1

- $w(A') \geq \frac{1}{2}w(S)$

- Then $A = A'$, $B = B' \cup \{m + 1, m + 2, \ldots, n\}$.

Case 2

- $w(A') \leq \frac{1}{2}w(S)$

- $|w(A) - w(B)| \leq w_{m+1}$
- $w(A) + w(B) = w(S)$
- $2\max(w(A), w(B)) \leq w(S) + w_{m+1}$

- Claim: $A \cup B$ is optimal (Relative error $= 0$)
 - Consider optimal solution $A^* \cup B^* = S$.
 - $w(A^*) \geq w(A^* \cap \{a_1, a_2, \ldots, a_m\})$ [why?]
 - $w(B^*) \geq w(B^* \cap \{a_1, a_2, \ldots, a_m\})$
 - Therefore,

\[
\max(w(A^*), w(B^*)) \geq \max(w(A'), w(B')) = w(A') = w(A).
\]

- Hence, $A \cup B$ is optimal.
Relative Error \[= \frac{C - C^*}{C^*} \]
\[= \frac{w(S) + w(m+1) - \frac{w(S)}{2}}{2 - \frac{w(S)}{2}} \]
\[= \frac{w_{m+1}}{w(S)} \]
\[\leq \frac{w_{m+1}}{(m+1)w_{m+1}} \]
\[= \frac{1}{m+1} \]
\[< \epsilon \]

Bottom line: approx. alg. for partition which is poly-time and has relative error < \epsilon!