Topic 23: Complexity Theory, P, and NP

(CIS 34)

CPS 230, Fall 2001

- Area of theoretical computer science.
- Broad Goals:
 - Establish (upper and) lower bounds on the number of steps it takes to solve a computational problem, using any algorithm.
 - Identify potentially hard computational problems.
 - Identify common traits among such problems.
 - Accumulate evidence for hardness.

The Clique problem

Def. Let $G = (V, E)$ be an undirected graph. A **clique** of G is a set $V' \subseteq V$ such that $orall u, v \in V'$ we have $(u, v) \in E$.

i.e. **clique** is a complete subgraph of G.

Optimization problem for clique:

Given G, find size of largest clique.

Algorithm for clique problem

```
for j ← |V| downto 1
  do list all subsets of $j$ vertices
     check if clique

Time = $\Omega(2^{|V|})$ — VERY SLOW!
```

Is there a “tractable” algorithm?

What do we mean by “tractable”?

Polynomial-time algorithms

Def. An algorithm A runs in **polynomial time** if \exists positive constants c and k such that A’s running time is at most cn^k on any problem instance of size n.

Q. What do we mean by “size n”?

A. Any problem instance can be **encoded** as a sequence of 0’s and 1’s.

Assume all numbers in encoding are in binary.

Size of problem instance = length of encoding. Multiple arguments are coded into a single string.

Choice of the encoding doesn’t matter as long as can compute one from another in **polynomial time**.
Example: Factoring

Given number \(n \), determine \(m \) that divides \(n \)

Suppose number \(n \) encoded in unary: \(11...1\)

Any factor \(m \) can be no greater than \(\sqrt{n} \)

Thus, check all numbers from \(2 \ldots \sqrt{n} \) (\(O(\sqrt{n}) \) checks)

Division in unary takes linear time \(O(n) \)

Thus factoring takes time \(O(n^{3/2}) \!\)

However, given binary encoding of \(L \) bits,
we must do \(\sqrt{n} = 2^{L/2} \) divisions!

Bottom line: specific encoding usually irrelevant
(we can solve problem on \(\langle G \rangle_1 \) in polynomial time
iff we can solve problem on \(\langle G \rangle_2 \) in polynomial time)

Normally presume “standard” encoding; that is,
using strings over a finite alphabet.
Typically need to be careful only when representation
sizes differ by an exponential factor.

Polynomial-time algorithms

Most problems seen so far have polynomial-time algo-

\[\text{Q. Does clique problem have a polynomial-time algo-
ritm?} \]

\[\text{A. No one knows. Most would be surprised if it did.} \]

Decision problem

Decision: yes/no (1/0) output

Decision problem for clique:

Given \(\langle G, k \rangle \),
\(G \) is an undirected graph, \(k \) is integer
does \(G \) have a clique of size \(k \)?

Complexity theory deals mostly with
decision problems.

Theorem (for Clique):

Optimization problem solvable in polynomial time

iff decision problem solvable in polynomial time.

Proof (for clique)

\((\text{Opt} \Rightarrow \text{Dec}) \)
Find max clique size.
Compare with \(k \).

\((\text{Dec} \Rightarrow \text{Opt}) \) Binary search.
Natural question: true for other problems?
Yes... when the thing to be optimized
has a polynomial number of possible values
(with respect to the size of the input instance).
Formal languages

Def. A formal language is a set of binary strings.

Example 1:
\[\{0, 1\}^* = \{ \text{all binary strings} \} \]

Example 2:
Every decision problem can be viewed as a language

\[\text{CLIQUE} = \{(G, k) : G \text{ has a clique of size } k\} \]

(i.e. CLIQUE is the set of binary encodings of all the graphs \(G \) that have a clique of size \(k \).)

Let \(Q \) be a decision problem

\(Q \) is entirely characterized by problem instances that produce a 1 (yes) answer

Can view \(Q \) as a language

\[L = \{ x \in \Sigma^* : Q(x) = 1 \} \]

where \(\Sigma \) is encoding alphabet.

For binary encoding \(\Sigma = \{0, 1\} \).

Example:

decision problem & corresponding language PATH

Decision problem:

Given graph \(G = (E, V) \), two nodes \(u \) and \(v \), and an integer \(k \), is there a path from \(u \) to \(v \) in graph \(G \) of length \(\leq k \)?

Corresponding language:

\[\text{PATH} = \{ (G, u, v, k) : G = (V, E) \text{ is an undirected graph, } u, v \in V, \]

\(k \geq 0 \) is an integer, and there exists a path from \(u \) to \(v \) in \(G \) whose length is at most \(k \} . \]

Algorithms and Decision Problems

An algorithm \(A \) accepts \(x \in \{0, 1\}^* \) if \(A(x) = 1 \)

An algorithm \(A \) rejects \(x \in \{0, 1\}^* \) if \(A(x) = 0 \)

Might do neither (i.e., loop forever)

Language \(L \) is accepted by \(A \) if

\[L = \{ x \in \{0, 1\}^* : A(x) = 1 \} \]
Algorithms and Decision Problems

Language L is **decided** by A if

\[x \in L \Rightarrow A(x) = 1 \text{ and } \quad x \notin L \Rightarrow A(x) = 0 \]

Accepted \Rightarrow might run for ever, output something, etc.

Decided \Rightarrow always halts and outputs 0 or 1

Class P

Def. An algorithm A runs in **polynomial time**

if \exists positive constants c and k

such that A’s running time is at most cn^k

on any problem instance of size n.

\[P = \{ L \subseteq \{0,1\}^* : \exists A \text{ such that } L \text{ is accepted by } A \text{ in polynomial time } \} \]

P: class of languages accepted by a polynomial-time algorithm.

Theorem

$P = \{ L \subseteq \{0,1\}^* : \exists A \text{ such that } L \text{ is decided by } A \text{ in polynomial time } \}$

Proof:

(decided) \Rightarrow (accepted) Trivial

(accepted) \Rightarrow (decided) ”simulation argument:"

Construct A' deciding L as follows:

Let A be some algorithm that accepts L in polynomial time.

Thus, \exists cons $c, k \geq 0$ such that

$\forall x \in L$, A accepts L in $\leq c|x|^k$ steps.

Define A' as follows: It simulates A

If A outputs 1 within $c|x|^k$ steps, A' outputs 1.

Else A' outputs 0.

A' runs in polynomial time

(i.e., always halts, even if A loops).

Is this proof constructive?

Q. Is CLIQUE $\in P$?

A. No one knows.

Most would be surprised if it is, since CLIQUE is NP-complete (next time).
Class NP

Is it easier to find a clique of size \(k \) or to check whether a given subset of \(k \) vertices forms a clique?

Def. A 2-argument algorithm \(A \)

verifies an input \(x \in \{0,1\}^* \)

if \(\exists y \in \{0,1\}^* \) such that \(A(x,y) = 1 \).

The language verified by \(A \) is

\[
L = \{ x \in \{0,1\}^* : \exists y \in \{0,1\}^* \text{ such that } A(x,y) = 1 \}
\]

We call \(y \) a certificate for \(x \in L \).

Polynomial-time verification:

\[
|y| = O(|x|^{O(1)}) \text{ and } A \text{ is polynomial time.}
\]

Example:

\(\text{CLIQUE} \in \text{NP} \).

Input 1: \(\langle G, k \rangle \)

Input 2: \(\langle V' \rangle \) such that \(V' \subseteq V \)

Verification algorithm checks that \(|V'| = k \),

and that every pair of vertices in \(V' \) is connected by an edge in \(E \).

If so, it outputs 1; else it outputs 0.

\(\langle G, k \rangle \) can be verified *iff* \(G \) has a clique of size \(k \).

Verification algorithm runs in polynomial time.

Thus, \(\text{CLIQUE} \in \text{NP} \).

"Verification Set": Pairing of input, something else

- Recognizable in polynomial time
- \(G \) can be verified \(\iff \) \(G \) has property

Theorem: \(P \subseteq \text{NP} \)

Proof:

Let \(L \) be in \(P \Rightarrow \exists \) a polynomial-time algorithm \(A \) that decides \(L \).

This polynomial-time algorithm \(A \) can be converted to a 2-argument verification algorithm that ignores its verification argument.

Big Question: Is \(P = \text{NP} \)?

Open question for \(\approx 25 \) years.

We do know that \(\text{CLIQUE} \) is in a sense the hardest problem in \(\text{NP} \).

If we can solve \(\text{CLIQUE} \) in polynomial time then every problem in \(\text{NP} \) can be solved in polynomial time!

\(\text{CLIQUE} \) is \(\text{NP-complete} \) (next time).