Topic 0: Introduction and Recurrences
(CLRS 1, 2)

CPS 230, Fall 2001

1 Administration

1.1 Basic information

- CPS230: Design and Analysis of Algorithms
 - Course www page at http://www.cs.duke.edu/courses/fall01/cps230/

- Instructor:
 - Jeff Vitter (D214A LSRC Bldg., jsv@cs.duke.edu)
 Interests: Design and analysis of algorithms (good match, eh?), especially for problems
 involving massive data sets, geometric computing, databases, and machine learning.
 - Office hours: Tuesdays 9am–10am.

- TA:
 - Ankur Gupta (D122 LSRC Bldg., agupta@cs.duke.edu)
 - Office hours: Fridays 2:20pm–3:35pm.

1.2 Course material

- Course synopsis: See web page handout

- Required textbook: Cormen, Leiserson, Rivest, and Stein, Introduction to Algorithms, 2nd

- Handouts.

- Lecture notes, based upon Lars Arge’s from previous classes. (Draft handed out at lecture;
 final version on web after lecture).

1.3 Schedule of Topics

- Lecture www page (http://www.cs.duke.edu/courses/fall01/cps230/lectures.html) contains
 information about covered material and pointers to the lecture notes. The exact schedule
 of which topic will be covered on which day has not been assigned so that we can be more
 flexible.
1.4 Grading

- Homework assignments: 30%.
- In-class midterm(s) and final: 60%
- Class participation: 10%. *Be sure to show up!*

1.5 Homework

- Homework will be assigned every other week, usually due on Mondays.
- Discussion among students is permitted, but students MUST write up solutions independently on their own. No materials or sources from prior years’ classes or from the Internet can be consulted.
- *Breaking the rules will result in expulsion.*
- Each student is required to make a copy of the Honor Code section of the web page, sign it indicating that the contents are understood, and turn it in to Jeff.

2 Introduction

- Class is about *designing* and *analyzing algorithms*

 - *Algorithm*: A well-defined procedure that transfers an input to an output.
 * Not a program (but often specified like it): An algorithm can often be implemented in several ways.
 - *Design*: We will study methods/ideas/tricks for developing (fast!) algorithms.
 - *Analysis*: Abstract/mathematical comparison of algorithms (without actually implementing them).

- Math is needed in three ways:

 - Formal specification of problem
 - Analysis of correctness
 - Analysis of efficiency (time, memory use,...)

- Hopefully the class will show that *algorithms matter!*

3 Algorithm example: Towers of Hanoi

See class handout from [GKP].

4 Algorithm example: Insertion-sort

4.1 Specification

- Input: \(n \) integers in array \(A[1..n] \)
- Output: \(A \) sorted in increasing order
4.2 Insertion-sort algorithm

```plaintext
FOR j = 2 to n DO
    key = A[j]
    i = j - 1
    WHILE i > 0 and A[i] > key DO
        A[i + 1] = A[i]
        i = i - 1
    OD
    A[i + 1] = key
OD
```

- NOTE: Algorithm shows example of the pseudo-code we will sometimes used to describe algorithms.

Example:

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>j=2</td>
<td>i=1</td>
<td>key=2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>i=0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>j=3</td>
<td>i=2</td>
<td>key=4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>i=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>j=4</td>
<td>i=3</td>
<td>key=6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>j=5</td>
<td>i=4</td>
<td>key=1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>i=3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>i=2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>i=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>i=0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>j=6</td>
<td>i=5</td>
<td>key=3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>i=4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>i=3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>i=2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Correctness

- Induction:
– The Invariant “A[1..j−1] is sorted” holds at the beginning of each iteration of FOR-loop.
– When j = n + 1 we have correct output.

4.4 Analysis

• We want to predict the resource use of the algorithm.
• We can be interested in different resources
 – but normally running time.
• To analyze running time we need mathematical model of a computer:

<table>
<thead>
<tr>
<th>Random-access machine (RAM) model:</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Memory consists of infinite array</td>
</tr>
<tr>
<td>– Instructions executed sequentially one at a time</td>
</tr>
<tr>
<td>– All instructions take unit time:</td>
</tr>
<tr>
<td>* Load/Store</td>
</tr>
<tr>
<td>* Arithmetic (e.g., +, −, *, /)</td>
</tr>
<tr>
<td>* Logic (e.g., >)</td>
</tr>
</tbody>
</table>

• Running time of an algorithm is the number of RAM instructions it executes.
• RAM model not completely realistic.
 – memory not infinite (even though we often imagine it is when we program)
 – not all memory accesses take same time (cache, main memory, disk)
 – not all arithmetic operations take same time (e.g., multiplications expensive)
 – instruction pipelining
 – other processes
• But RAM model often enough to give relatively realistic results (if we don’t cheat too much).

• Running time of insertion-sort depends on many things
 – How sorted the input is
 – How big the input it
 – ...
• Normally we are interested in running time as a function of input size
 – in insertion-sort: n.
• We don’t really want to count every RAM instruction
 – Let us analyze insertion-sort by assuming that line i in the program use c_i RAM instructions.
 – How many times are each line of the program executed?
 * Let t_j be the number of times line 4 (the WHILE statement) is executed in the jth iteration.
\begin{verbatim}
FOR j = 2 to n DO
key = A[j]
i = j - 1
WHILE i > 0 and A[i] > key DO
A[i + 1] = A[i]
i = i - 1
OD
A[i + 1] = key
OD
\end{verbatim}

- Running time: (depends on \(t_j\))
\[
T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)
\]
- Best case: \(t_j = 1\) (already sorted)
\[
T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 (n-1) + c_7 (n-1) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7) = k_1 n - k_2
\]

Linear function of \(n\)
- Worst case: \(t_j = j\) (sorted in decreasing order)
\[
T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} j + c_5 \sum_{j=2}^{n} (j-1) + c_6 \sum_{j=2}^{n} (j - 1) + c_7 (n-1)
\]
\[
= c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \left(\frac{n(n+1)}{2} - 1 \right) + c_5 \left(\frac{(n-1)n}{2} \right)
\]
\[
+ c_6 \left(\frac{(n-1)n}{2} \right) + c_7 (n-1)
\]
\[
= (c_4/2 + c_5/2 + c_6/2)n^2 + (c_1 + c_2 + c_3 + c_4/2 - c_5/2 - c_6/2 + c_7)n - (c_2 + c_3 + c_4 + c_7) = k_3 n^2 + k_4 n - k_5
\]

Quadratic function of \(n\)

Note: We used \(\sum_{j=1}^{n} j = \frac{n(n+1)}{2}\) (Next topic!)

- “Average case”: Be careful! (average over what?)

We assume \(n\) numbers chosen randomly \(\implies t_j = (j + 1)/2\)
\[
T(n) = k_6 n^2 + k_7 n + k_8
\]

Still **Quadratic function of** \(n\)

- Note:
 - We will normally be interested in worst-case running time.
* Upper bound on running time for any input.
* For some algorithms, worst-case occur fairly often.
* Average case often as bad as worst case (but not always!).

– We will only consider order of growth of running time:
 * We already ignored cost of each statement and used the constants c_i.
 * We even ignored c_i and used k_i.
 * We just said that best case was linear in n and worst/average case quadratic in n.

\Rightarrow O-notation (best case $O(n)$, worst/average case $O(n^2)$) (next lecture!)

5 Designing Good Algorithms: Divide and Conquer/Mergesort

5.1 Divide-and-conquer

* Can we design better than $O(n^2)$ sorting algorithm?
* We will do so using one of the most powerful algorithm design techniques.

Divide and Conquer

To Solve P:

1. Divide P into smaller problems $P_1, P_2, P_3..., P_k$.
2. Conquer by solving the (smaller) subproblems recursively.
3. Combine solutions to $P_1, P_2, ..., P_k$ into solution for P.

5.2 Merge-Sort

* Using divide-and-conquer, we can obtain a merge-sort algorithm.

 – Divide: Divide n elements into two subsequences of $n/2$ elements each.
 – Conquer: Sort the two subsequences recursively.
 – Combine: Merge the two sorted subsequences.

* Assume we have procedure Merge(A, p, q, r) which merges the sorted array $A[p..q]$ with the sorted array $A[q+1..r]$ in $O(r - p)$ time.

* We can sort $A[p..r]$ as follows (initially $p = 1$ and $r = n$):

  ```plaintext
  Merge Sort($A, p, r$)
  
  If $p < r$ then
  
  $q = [(p + r)/2]$
  Merge Sort($A, p, q$
  Merge Sort($A, q + 1, r$
  Merge($A, p, q, r$
  ```

Example:
5.3 Correctness

- Induction on n

 Easy assuming Merge() is correct!

5.4 Analysis

- To simplify things, let us assume that n is a power of 2, i.e. $n = 2^k$ for some k.

 - Running time of the procedure can be analyzed using a recurrence equation/relation.

 $T(n) \leq c_1 + T(n/2) + T(n/2) + c_2n$

 $\leq 2T(n/2) + c_3n$

 $\implies T(n) = O(n \log_2 n)$ as we will see later.

 - We can also get $O(n \log_2 n)$ bound by noticing that the recursion tree has depth $\log_2 n$ and that $O(n)$ time is spent on each level.

 - Note:
 - We really have $T(n) = c_4$ if $n = 1$
– If \(n \neq 2^k \) things can be complicated (We will often assume \(n = 2^k \) to avoid complicated cases).

5.5 Logarithms

– Base 2 logarithm comes up all the time (from now on we will always mean \(\log_2 n \) when we write \(\log n \)).
 - Number of times we can divide \(n \) by 2 to get to 1 or less.
 - Number of bits in binary representation of \(n \).
 - Inverse function of \(2^n = 2 \cdot 2 \cdot 2 \cdots 2 \) \((n \text{ times}) \).
 - Way of doing multiplication by addition: \(\log(ab) = \log(a) + \log(b) \)

– Note:
 - \(\log_a n = \frac{\log_b n}{\log_b a} \)
 - \(\log n \ll \sqrt{n} \ll n \)

6 Review: Sorting algorithms

– We introduced the RAM model of computation and discussed how the algorithms use order \(n^2 \) and \(n \log n \) operations, respectively.

– We analyzed the Tower of Hanoi problem using recursion.

– Also insertion sort.

– We developed the merge sort algorithm using the important Divide-and-conquer design technique (a form of recursion).