
To appear in the SIGGRAPH 99 conference proceedings

Art-Based Rendering of Fur, Grass, and Trees

Michael A. Kowalski�∗ Lee Markosian� J.D. Northrup� Lubomir Bourdev†

Ronen Barzel‡ Loring S. Holden� John F. Hughes�

�Department of Computer Science †Advanced Technology Group ‡Pixar
Brown University Adobe Systems

{mak,lem,jdn,lsh,jfh}@cs.brown.edu lbourdev@adobe.com ronen@pixar.com

Abstract

Artists and illustrators can evoke the complexity of fur or vege-
tation with relatively few well-placed strokes. We present an al-
gorithm that uses strokes to render 3D computer graphics scenes
in a stylized manner suggesting the complexity of the scene with-
out representing it explicitly. The basic algorithm is customizable
to produce a range of effects including fur, grass and trees, as we
demonstrate in this paper and accompanying video. The algorithm
is implemented within a broader framework that supports proce-
dural stroke-based textures on polyhedral models. It renders mod-
erately complex scenes at multiple frames per second on current
graphics workstations, and provides some interframe coherence.

CR Categories and Subject Descriptors:I.3.3: Computer Graph-
ics: Picture/Image Generation; line and curve generation; bitmap
and frambuffer operations; I.3.5 Computer Graphics: Computa-
tional Geometry and Object Modeling: curve, surface, solid, and
object representations; I.3.7: Three-Dimensional Graphics and Re-
alism: Color, shading, shadowing, and texture.Additional Key
Words: Non-photorealistic rendering, graftals, procedural textures.

1 Introduction

Any art student can rapidly draw a teddy bear or a grassy field.
But for computer graphics, fur and grass are complex and time-
consuming. Even so, the artist’s few-stroke rendering may have
greater persuasive or evocative power than the usual computer-
graphics rendering.

How does the artist effectively communicate the teddy bear or
grass? By rapidly creating an impression of free-form shape – diffi-
cult to do with conventional 3D modeling systems – and then draw-
ing a few well-chosen strokes. This paper describes some of our
efforts to expand the expressive power of 3D graphics by adopting
techniques for depicting complexity from the centuries-old disci-
plines of art and illustration.

Three goals in our work on art-based graphics are to give the de-
signer of a scene control over the style of rendering; to ease the

∗Currently at ATR Media Integration & Communications Research Lab-
oratories, Kyoto, 619-0288, Japan.

burden of modeling complex scenes by treating the rendering strat-
egy as an aspect of modeling; and to provide interframe coherence
for the kinds of stylized renderings we’ve developed. Other goals,
less directly related to the work in this paper, include the develop-
ment of systems for rapidly creating free-form shapes [9], and the
control of scene composition.

Our approach to creating complex expressive renderings is to target
the kinds of images made by artists and illustrators and reproduce
the effects and techniques we observe in those images. Much 2D art
and illustration is created by making strokes on a flat surface (paper,
canvas), so we have based our work on what we call “stroke-based
textures.” We started from the drawings of Theodore Geisel (“Dr.
Seuss”) [4, 5], in part because they are such an extreme departure
from the domain of conventional computer graphics.

Figure 1 A furry creature, after Dr. Seuss. The fur is generated in a
view-dependentway by a proceduralstroke-based texture that places
it near silhouettes, varying the style of the tufts according to how
much the underlying surface faces the viewer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGGRAPH 99, Los Angeles, CA USA
Copyright ACM 1999 0-201-48560-5/99/08 . . . $5.00

433

Supplemental Materials
Supplemental materials for this paper can be found in this directory.

To appear in the SIGGRAPH 99 conference proceedings

Figure 2 A more complex scene, again based on the style of Dr. Seuss. The grass, bushes, and truffula treetops are implemented with graftal
textures that use the same basic algorithm to place graftals with a variety of shapes and drawing rules. The truffula tree trunks are drawn by
stroke textures (not graftal textures) assigned to ribbon-like surfaces that always face the viewer. The treetops use the same type of graftal as
seen in the previous figure, but with a different orientation rule: they always circulate clockwise around the treetop, no matter what the point of
view. This cannot be modeled with any fixed geometry, of course.

There are two main research challenges: the development of algo-
rithms and a software framework in which procedural stroke-based
textures can be rendered, and the development of a user interface
(within the context of a free-form modeling system) that allows a
designer to assign and customize such procedural textures. In this
paper, we describe our approach to the first of these challenges.

We have developed a system to generate and render stroke-based
textures that mimic the styles of two artists, and a framework for
generalizing this to other techniques. The system renders the im-
ages shown in this paper at several frames per second on a Sun
Sparc Ultra 2 model 2/300 with Creator 3D graphics, and even
faster on a high-end PC. Our main contributions are the system ar-
chitecture, the (partial) temporal coherence of the texture elements,
and the particular methods used to mimic Dr. Seuss’s and Geoffrey
Hayes’s [7] styles.

2 Prior Work

Using art as a motivation for computer graphics techniques is not
new, and our work builds on the efforts of many others. Funda-
mental to our ideas are the particle systems of Reeves [12, 13],
which he used to create trees, fireworks, and other complex imagery
from relatively simple geometry. Alvy Ray Smith’s later use of par-
ticles, together with recursively defined L-systems that he called
“graftals,” extended this to more biologically accurate tree and plant
models [15]. His “Cartoon Tree” is a direct precursor to the work in
this paper. Graftals have since come to be described more generally:
according to Badler and Glassner [1], “Fractals and graftals create
surfaces via an implicit model that produces data when requested.”
We use the word “graftal” in this much more general sense.

We use a modified version of the “difference image” stroke-placing
algorithm of Salisburyet al. [14] to place procedural texture ele-
ments at specific areas of the surface. Winkenbach and Salesin [17]
described the use of “indication” (showing a texture on part of an
object) in pen-and-ink rendering. And Strothotteet al. [16] exten-
sively discuss the use of artistic styles to evoke particular effects or
perceptions.

At a more mechanical level, Meier’s work on particle-based brush
strokes [11] was a major inspiration in two ways: first, her use of
particles to govern strokes that suggest complexity in her Monet-
like renderings showed that not all complexity need be geometric;
second, the fixed spacing of the particles on the objects, which lim-
ited how closely one could zoom into the scene, inspired us to seek
a similar but hybrid screen/object space technique.

The present work builds on our earlier efforts [10] to produce non-
photorealistic effects at interactive frame rates. One limitation of
our earlier system was that it supported just one “style” at any given
time – applying the style equally to every object in the scene. A
more flexible system would allow the designer of a virtual scene
to assign different nonphotorealistic “textures” to different surfaces
within the scene. The framework we describe in the next section
makes this possible. For instance, the fur texture on the creature in
figure 1 is applied over most of the body but not the face, even in
profile. Our other images show more examples of the selective use
of distinct nonphotorealistic textures applied to objects in a scene
according to what each represents.

2
434

To appear in the SIGGRAPH 99 conference proceedings

Figure 3 The same scene as in figure 2 rendered without graftal
textures or the stroke-based textures on the truffula trunks.

3 Software Framework

Our procedural stroke-based textures are implemented within a gen-
eral system for rendering polyhedral models using OpenGL [2]. In
our system models are divided into one or more surface regions
(calledpatches), to each of which the user can assign one or more
procedural textures (calledtextures) – although just one is active at
a time. The “procedure” that defines a texture needn’t be compli-
cated – many simply draw their patch in some conventional style
(e.g., smooth-shaded or wireframe). One of our textures performs
Floyd-Steinberg dithering [3]. Others perform a variety of hatching
effects.

An important component of the system is the provision ofreference
images. These are off-screen renderings of the scene, subsequently
read from frame-buffer memory to main memory and made avail-
able to the procedural textures. We currently use two kinds of ref-
erence images: acolor reference imageand anID reference image.

To prepare the color reference image, the active texture of each
patch is asked to render into it in some appropriate way, depend-
ing on how the texture will use the image. For example, the graftal
textures described in the next section use the color reference im-
age in a special way to decide where to draw tufts of fur, grass, or
leaves. For the ID reference image, triangles (or edges) are each
rendered with a color that uniquely identifies that triangle or edge.
Lighting and blending are disabled so that the colors are preserved
exactly.

After the ID reference image is prepared, all of its pixels are
checked in one pass: when a pixel contains the ID of a triangle or
edge, that pixel location is stored in a list on the patch that contains
the triangle or edge. Later, the active texture of the patch can access
the list of pixel locations in its main rendering loop. For example,
the dithering texture simply runs the Floyd-Steinberg algorithm on
the pixels of its patch.

The ID reference image can be used to determine the visibility of
a point on a known triangle – the details of how to make this work
robustly, even for triangles whose screen dimensions are less than
a pixel, are beyond the scope of this paper (see [8]). If the triangle
belongs to a patch of a convex surface, a simple test can be used: If
the point (in screen space) is more than one pixel from the bound-
ary of the patch, and also from any visible silhouette curve in the
scene, then it is visible if and only if its triangle is front-facing and
the value in the ID reference image at the point’s screen position
identifies a triangle of the same patch.

4 Graftal Textures

The textures described in this section place fur, leaves, grass or
other geometric elements into the scene procedurally, usually to
achieve a particular aesthetic effect (e.g., indicating fur at silhou-
ettes but tending to omit it in interior surface regions). We’ll call
this class of texturesgraftal textures. They all share the same ba-
sic procedure for placing tufts, leaves, grass, etc., all of which we
call graftals. The key requirements are that graftals be placed with
controlled screen-space density in a manner matching the aesthetic
requirements of the particular textures, but at the same time seem
to “stick” to surfaces in the scene, providing interframe coherence
and a sense of depth through parallax.

4.1 Placing graftals with the difference image algorithm

To meet these requirements, we have adapted the “difference im-
age” algorithm (DIA) used by Salisburyet al. [14] to produce pen-
and-ink-style drawing from grayscale images. Their algorithm con-
trols the density of hatching strokes in order to match the gray tones
of the target image. For each output stroke drawn, a blurred im-
age of the stroke is subtracted from a “difference” image (initially
the input image). The next output stroke is placed by searching in
the difference image for that pixel most (proportionally) in need of
darkening, and initiating a stroke there. The resulting image con-
sists of marks whose density conveys the gray tones of the original.

The DIA meets our first requirement of placing marks (or in our
case, graftals) with a controlled screen-space density. To control
graftal placement according to a particular aesthetic requirement,
each graftal texture simply draws its patch into the color reference
image so that darker tones correspond to regions requiring a denser
distribution of graftals. We call the result thedesire image, and the
value at a pixel in that image measures thedesirethat graftals be
placed there. For example, to render the furry creature in figure 1,
the reference image is drawn darker near silhouettes – easily done
by placing a point light near the camera position. Also, some re-
gions (e.g., the feet) can be explicitly darkened by the designer to
promote a greater density of graftals there.1

To meet the requirement that graftals appear to stick to surfaces
in the scene, we must convert the 2D screen position of a graftal
(assigned to it by the DIA) to a 3D position on some surface. This is
achieved inO(1) time (per graftal) by using the ID reference image
to find the triangle (and the exact point on the triangle with a ray-
test) corresponding to a given screen position.

This now allows graftals to be distributed over surfaces in the scene
to achieve a desired screen-space density – for a single frame. To
create some interframe coherence, we modify the algorithm:

• In the first frame, graftals are placed according to the DIA.

• In each successive frame, the graftal texture first attempts to place
the graftals from the preceding frame.

• Then, when all the “old” graftals have been considered for place-
ment and accepted or rejected, the graftal texture executes the
DIA to place new graftals into the scene as needed.

An existing graftal may fail to be placed in a frame for two reasons:
(i) the graftal is not visible (it is occluded or off-screen); (ii) there
is insufficient desire in the desire image at the graftal’s screen po-
sition. This can happen if the original desire value at the graftal’s
screen position was small (e.g. the graftal is far from a silhouette).

1To further encourage drawing near silhouettes, we filter the desire im-
age, replacing each desire valued with 2d− d2, whered ranges from 0 (no
desire) to 1 (maximum desire).

3
435

To appear in the SIGGRAPH 99 conference proceedings

Figure 4 A tree rendered in the style of Geoffrey Hayes [7]. The
leaves are drawn with graftals based on OpenGL triangle fans, rather
than the triangle strip-based type of graftal shown in figure 5. The
interior is shaded with the technical-illustrator shader of Gooch
et al.[6].

It can also happen if the camera has zoomed out and the graftal’s
neighbors, now closer to it in screen space, have already subtracted
the available “desire” in the vicinity. When a graftal fails to be
placed in a frame, it is discarded. Otherwise it updates its attributes
(as described below) and is drawn.

We make a final modification to the DIA: we use a bucket-sort data
structure to find the pixel with the greatest desire. This key step
can be completed inO(1) time rather than theO(log(n)) quad-tree
method of Salisburyet al., wheren is the number of pixels.2 This
lets the algorithm run at interactive speeds on simple scenes.

4.2 Subtracting the blurred image

When a graftal is placed in the scene (either initially or in subse-
quent frames) it subtracts a blurred “image” of itself from the dif-
ference image. For this, graftals are treated as points with a given
(variable) screen size, so the blurred image is just a Gaussian dot.

Pixels in the desire image are encoded with values ranging from
zero (no desire) to one (maximum desire). Each graftal has an as-
sociated “volume” that determines how much total “desire” it sub-
tracts from the desire image. This volume is proportional to the
graftal’s approximate screen space area. Intuitively, a visually large
graftal subtracts a large volume, corresponding to a wide blurred
dot: this eliminates desire in a wide region near the graftal, prevent-
ing others from being placed there.

Graftals can scale their geometry and volume so that they tend to
maintain a desired screen-space size and relative density. For ex-
ample, strictly adhering to the laws of perspective when zooming
away from the model could result in graftals being drawn too small
to be individually discernible. An artist might choose to draw them
larger than they would realistically appear in this case. In any case,
graftals that appear smaller in screen space should scale their vol-
ume accordingly in the DIA , or they will be placed too sparsely.

To perform such compensatory scaling, each graftal must keep track
of its approximate screen space size. It does so by first converting
its object-space lengthL to a screen-space measurements in every
frame (ignoring foreshortening). Then it chooses a scale factorr by
which to multiplyL as follows. As part of its definition, the graftal is
given a desired screen space lengthd and corresponding volumev0

2We thank Ken Lao for suggesting this idea.

(chosen by the user). At one extreme the graftal could taker = d/s,
so that it always appears the same size on the screen regardless of
distance. At the other extreme it could taker = 1, which would be
strictly realistic. In our examples, we have taken a weighted average
between the two extremes:

r = w(d/s) + (1− w),

with weight w = 0. 25. This approach moderates the degree to
which the graftal scales with distance, providing a measure of re-
sistance to change from its ideal size. Finally, the volume in each
frame is calculated asv = v0(rs/d)2 to keep it proportional to the
graftal’s current screen size.

Let d0 be the value in the desire image at the graftal’s screen po-
sition, x0 (which has been verified as visible). Letv > 0 be the
volume of the graftal. We seek a 2D Gaussian functiong such that

g(0) = d0 and

∞∫

−∞

∞∫

−∞

g(x) dxdy= v.

This is given byg(x) = d0e−πd0|x|2/v.

The functiong has infinite support, but outside some radius its val-
ues are negligible. We set the “minimum usable desire”m to be the
smallest value we can represent in the 8 bits we use to store desire.
Theng(x) < m when|x| > (log(d0/m)v/(πg0))1/2. This last value
is the radius beyond which we need not subtractg from the desire
image. We thus subtractg(x − x0) from pixels in the desire image
whose distance fromx0 is less than this value.

As the graftal subtracts its Gaussian from the desire image, it
records the total desire subtracted. (It can’t subtract more from a
pixel than is stored there.) When all goes well, this quantity should
equal the volume,v (ignoring discretization errors and the small
portion of the Gaussian outside the maximum radius above). If the
total is less thanv, the graftal may draw itself with a reduced level
of detail. If the total is too low (below 0.5 in all our examples), the
graftal reports failure to its texture and is removed from the scene.
To avoid “popping” when graftals appear and disappear, they may
initially be drawn with reduced detail, quickly increasing to full
detail over a short time, and reversing the process when they are
removed. This has its limitations, though, as we discuss below.

(a) (b) (c) (d)

Figure 5 A fur graftal is based on a planar polyline and table of
widths, used to construct a GL triangle strip (a). The graftal can
render itself in three ways: It can draw a set of filled polygons with
strokes along both borders (b) or just one (c); or it can draw just the
spine (d).

4.3 Details of fur graftals

A fur graftal – the kind used for the furry creature in figure 1, and
for the truffula tufts and grassy mounds at the base of the trees in
figure 2 – is not particularly complex. It is based on a flat tapering
shape by a gradually reducing width about a central spine (see fig-
ure 5). The central spine is a planar polyline, and the taper widths

4
436

To appear in the SIGGRAPH 99 conference proceedings

Draw nothing

Draw nothing

 View direction

Draw filled without outline
Draw filled with outline edges

d = 0

Spine only

Figure 6 The dot productd of the view vector and surface normal
determines a graftal’s drawing style. In figure 1 the “Draw filled
without outline” region is empty: we transition directly from “filled
with outline” to “draw nothing.”

are recorded in an array. For the model in figure 1, just a few taper
widths were assigned; for the truffula tufts there were about seven.
The shape of the central spine was drawn on graph paper and en-
tered by hand.

After being placed with the DIA , each fur graftal determines how
to orient and draw itself by computing the dot productd of the unit
view vector~v with the unit normal~n to the underlying surface at the
graftal’s object-space position (see figure 6). For varying values of
d, the tuft may be drawn filled, filled with one edge, filled with both
edges, as a spine only, or not at all. For the fur in figure 1, we draw
just the spine for−0. 75< d < −0. 6. We draw the filled tuft with
both edges for−0. 55 < d < 0. Other schemes are possible, and
we believe that adjusting the thresholds and drawing styles during
“fade-in” and “fade-out” might help smooth these transitions.

Finally, the fur graftals are oriented to face the camera – that is,
to lie in the plane containing the underlying surface normal and
most nearly orthogonal to the view vector. They’re placed so that in
general they bend down. This behavior can be modified (as in the
truffula tufts) so that they point clockwise, or so that they follow
directions that have been “painted” onto the graftal texture’s patch,
as in the feet in figure 1.

5 Results and Future Work

Our system can produce scenes that evoke a remarkable sense of
complexity, in a style that’s new to 3D graphics, and at interac-
tive rates. Figures 2 and 4 show the kinds of results that can be
achieved with graftal textures. In each case the underlying geome-
try was simple to produce, yet the renderings have an expressive-
ness often lacking in computer graphics imagery. With our system,
even the truffula scene can be rendered at several frames per second
on a high-end PC.

The accompanying video3 shows our system in action. It includes
sequences captured in real-time and animation sequences rendered
off-line and played back at significantly higher frame rates. The
problem of poor frame-to-frame coherence stands out most notice-
ably in the latter case. Graftals that persist from frame to frame
maintain geometric coherence (if we simply redistributed graftals
at every frame, the flicker would be overwhelming); unfortunately,
the DIA has no inherent interframe consistency, so it’s easy for a
graftal to be “crowded out” in one frame, replaced in the next, and
so on, causing the flickering artifacts that are so noticeable in the
video.

3See the Siggraph 99 Conference Proceedings Video Tape.

We have recently begun experimenting with some strategies to ad-
dress this problem. One possibility is to make much greater use of
fading and alpha blending when introducing graftals into the scene
and taking them out. The degree to which this approach is usable
depends quite a lot on the specific style being targeted. Fading in a
large yellow truffula tuft outlined in black against a blue sky may
be just as jarring as introducing it suddenly; but fading in semi-
transparent blades of grass rendered with a watercolor-like effect
over green terrain might seem perfectly acceptable.

One problem we have encountered in our early experiments with
fading in tufts of fur like those in figure 1 occurs when all the tufts
along a silhouette are newly introduced, and thus nearly transpar-
ent. The model then appears (briefly) to be missing its fur along that
silhouette. A possible solution that we have not yet implemented is
to maintain a separate population of tufts drawn on back-facing sur-
faces. This requires an auxiliary ID reference image prepared with
front-facing triangles culled. It also requires two separate calls to
our modified DIA each frame – one to place front-facing tufts, an-
other to place back-facing ones. The point is that tufts emerging into
view from behind a silhouette (as the object turns) would already be
drawn and thus would not “pop in.” Each frame might take twice
as long to render – possibly a worthwhile trade-off if the resulting
animations are significantly more watchable.

Another strategy we have experimented with is to usestaticgraftals
(see figure 7). With this approach, graftals are assigned fixed po-
sitions on the surface, rather than being generated each frame as
needed. They still draw in a view-dependent way – those far from
a silhouette, say, may not draw at all. This works quite well as long
as the camera does not zoom out too far: in that case the graftals
are drawn too densely in screen space. We can overcome this by as-
signing graftals several levels of priority – say numbered 0 through
2. Each level is distributed evenly over the surface, with those in a
given level outnumbering those in the next lower level by a factor of
about four. In a given frame, every graftal at level 0 “draws” itself
view-dependently (possibly not at all if far from a silhouette). Each
also subtracts its blurred image from the desire image, as in the
DIA , and measures its success rate. If, collectively, this rate is high
enough, the next level is given the chance to draw, and goes through
the same procedure to decide whether the last level should also have
the chance to draw. This strategy is suitable for localized objects -
– we have tested it on versions of the truffula treetops – but not
for landscapes where the choice of what level graftal to draw must
vary over the surface according to distance from the camera. Our
preliminary results indicate the effectiveness of this strategy. We
demonstrate this in the accompanying videotape. Figure 7 shows a
truffula tree top with static graftals drawn at three levels of detail.

6 Acknowledgments

We thank Michael LeGrand for creating the “furry creature” model.
Thanks also to Andy van Dam and the Graphics Group, and to our
sponsors: the NSF Graphics and Visualization Center, Advanced
Network and Services, Alias/Wavefront, Autodesk, IBM, Intel, Mi-
crosoft, National Tele-Immersion Initiative, Sun Microsystems, and
TACO. Lee Markosian received support for his graduate education
from Intel through the Intel Foundation Ph.D. Fellowship program.

5
437

To appear in the SIGGRAPH 99 conference proceedings

(a) (b) (c)

Figure 7 A truffula treetop with static graftals organized in a three-level hierarchy. When the camera is close, all three levels are drawn (a). As
the camera zooms out, only two levels are drawn (b), and finally just the base level is drawn (c).

References

[1] Norman I. Badler and Andrew S. Glassner. 3D object modeling.
In SIGGRAPH 97 Introduction to Computer Graphics Course Notes.
ACM SIGGRAPH, August 1997.

[2] OpenGL Architecture Review Board.OpenGL Reference Manual,
2nd Edition. Addison-Wesley Developers Press, 1996.

[3] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.Computer
Graphics: Principles and Practice. Addison-Wesley, Reading, MA,
2nd edition, 1992.

[4] Dr. Seuss (Theodor Geisel).The Lorax. Random House, New York,
1971.

[5] Dr. Seuss (Theodor Geisel).The Foot Book. Random House, New
York, 1988.

[6] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A non-
photorealistic lighting model for automatic technicalillustration. In
SIGGRAPH 98 Conference Proceedings, pp. 447–452. ACM SIG-
GRAPH, July 1998.

[7] Geoffrey Hayes.Patrick and Ted. Scholastic, Inc., New York, 1984.

[8] Lee Markosian. Art-based Modeling and Rendering for Computer
Graphics. PhD thesis, Brown University, November 1999 (expected
completion).

[9] Lee Markosian,Jonathan M. Cohen, Thomas Crulli, and John Hughes.
Skin: A constructive approach to modeling free-form shapes. In
SIGGRAPH 99 Conference Proceedings. ACM SIGGRAPH, August
1999.

[10] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D.
Bourdev, Daniel Goldstein, and John F. Hughes. Real-time nonpho-
torealistic rendering. InSIGGRAPH 97 Conference Proceedings, pp.
415–420. ACM SIGGRAPH, August 1997.

[11] Barbara J. Meier. Painterly rendering for animation. InSIGGRAPH
96 Conference Proceedings, pp. 477–484. ACM SIGGRAPH, August
1996.

[12] W. T. Reeves. Particle systems – a technique for modeling a class of
fuzzy objects.ACM Trans. Graphics, 2:91–108, April 1983.

[13] William T. Reeves and Ricki Blau. Approximate and probabilistic al-
gorithms for shading and rendering structured particle systems. In
SIGGRAPH 85 Conference Proceedings, pp. 313–322. ACM SIG-
GRAPH, July 1985.

[14] Michael P. Salisbury, Michael T. Wong, John F. Hughes, and David H.
Salesin. Orientable textures for image-based pen-and-ink illustration.
In SIGGRAPH 97 Conference Proceedings, pp. 401–406. ACM SIG-
GRAPH, August 1997.

[15] Alvy Ray Smith. Plants, fractals and formal languages. InSIGGRAPH
84 Conference Proceedings, pp. 1–10. ACM SIGGRAPH, July 1984.

[16] T. Strothotte, B. Preim, A. Raab, J. Schumann, and D. R. Forsey. How
to render frames and influence people. InComputer Graphics Forum,
volume 13, pp. 455–466. Eurographics, Basil Blackwell Ltd, 1994.
Eurographics ’94 Conference issue.

[17] Georges Winkenbach and David H. Salesin. Computer–generated
pen–and–inkillustration. InSIGGRAPH 94 Conference Proceedings,
pp. 91–100. ACM SIGGRAPH, July 1994.

6
438

