E/R model: review

- Entity sets
 - Keys
 - Weak entity sets
- Relationship sets
 - Attributes on relationships
 - Multiplicity
 - Roles
 - Binary versus N-ary relationships
 - Modeling N-ary relationships with weak entity sets and binary relationships
 - ISA relationships

Database design steps: review

- Understand the real-world domain being modeled
- Specify it using a database design model (e.g., E/R)
- Translate specification to the data model of DBMS (e.g., relational)
- Create DBMS schema
- Next: translating an E/R design to a relational schema

Translating entity sets

- An entity set translates directly to a table
 - Attributes → columns
 - Key attributes → key columns

 Student (SID, name)
 Course (CID, title)

Translating weak entity sets

- Remember the “borrowed” key attributes
- Watch out for attribute name conflicts

Translating relationship sets

- A relationship set translates to a table
 - Keys of connected entity sets → columns
 - Attributes of the relationship set (if any) → columns
 - Multiplicity of the relationship set determines the key of the table

 Enroll (SID, CID, grade)
More examples

Translating double diamonds

- Recall that a double-diamond relationship set connects a weak entity set to another entity set.
- No need to translate because the relationship is implicit in the weak entity set’s translation.

Translating subclasses & ISA (approach 1)

- Entity-in-all-superclasses approach
 - An entity is represented in the table for each subclass to which it belongs.
 - A table includes only the attributes attached to the corresponding entity set, plus the inherited key.

Translating subclasses & ISA (approach 2)

- Entity-in-most-specific-class approach
 - An entity is only represented in one table (corresponding to the most specific entity set to which the entity belongs).
 - A table includes the attributes attached to the corresponding entity set, plus all inherited attributes.

Translating subclasses & ISA (approach 3)

- All-entities-in-one-table approach
 - One relation for the root entity set, with all attributes found anywhere in the network of subclasses.
 - Use a special NULL value in columns that are not relevant for a particular entity.

Comparison of three approaches

- Entity-in-all-superclasses
 - Student (SID, name), GradStudent (SID, office)
 - Pro: All students are found in one table.
 - Con: Attributes of grad students are scattered in different tables.

- Entity-in-most-specific-class
 - Student (SID, name), GradStudent (SID, name, office)
 - Pro: All attributes of grad students are found in one table.
 - Con: Students are scattered in different tables.

- All-entities-in-one-table
 - Student (SID, name, office)
 - Pro: Everything is in one table.
 - Con: Too many NULL’s; complicated if class hierarchy is complex.
A complete example

Simplifications and refinements

An alternative design

Design principles