A motivating example

Example: find Bart’s ancestors

"Ancestor" has a recursive definition

- X is Y’s ancestor if
 - X is Y’s parent, or
 - X is Z’s ancestor and Z is Y’s ancestor

Parent child

Homer Bart
Homer Lisa
Marge Bart
Marge Lisa
Abe Homer
Ape Abe
Bart Lisa
Marge Homer
Abe
Ape

Recursion in SQL

- SQL2 had no recursion
 - You can find Bart’s parents, grandparents, great grandparents, etc.
    ```
    SELECT p1.parent AS grandparent
    FROM Parent p1, Parent p2
    WHERE p1.child = p2.parent
    AND p2.child = 'Bart';
    ```
 - But you cannot find all his ancestors with a single query
- SQL3 introduces recursion
 - WITH clause
 - Implemented in DB2 (called common table expressions)

Ancestor query in SQL3

```sql
WITH Ancestor(anc, desc) AS
    ((SELECT parent, child FROM Parent)
     UNION
     (SELECT a1.anc, a2.desc
      FROM Ancestor a1, Ancestor a2
      WHERE a1.desc = a2.anc))

SELECT anc
FROM Ancestor
WHERE desc = 'Bart';
```

Fixed point of a function

- If $f: T \rightarrow T$ is a function from a type T to itself, a fixed point of f is a value x such that $f(x) = x$
- Example: What is the fixed point of $f(x) = x / 2$?
 - 0, because $f(0) = 0 / 2 = 0$
- To compute a fixed point of f
 - Start with a "seed": $x \leftarrow x_0$
 - Compute $f(x)$
 - If $f(x) = x$, stop; x is fixed point of f
 - Otherwise, $x \leftarrow f(x)$; repeat
- Example: compute the fixed point of $f(x) = x / 2$
 - With seed 1: 1, 1/2, 1/4, 1/8, 1/16, … → 0

Fixed point of a query

- A query q is just a function that maps an input table to an output table, so a fixed point of q is a table T such that $q(T) = T$
- To compute fixed point of q
 - Start with an empty table: $T \leftarrow \emptyset$
 - Evaluate q over T
 - If the result is identical to T, stop; T is a fixed point
 - Otherwise, let T be the new result; repeat
 - Starting from \emptyset produces the unique minimal fixed point (assuming q is monotonic)
Finding ancestors

\[
\text{WITH Ancestor(anc, desc) AS }
\begin{cases}
\text{(SELECT parent, child FROM Parent) }
\text{UNION}
\text{(SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2)}
\text{WHERE a1.desc = a2.anc)}
\end{cases}
\]

Think of it as

\[
\text{Ancestor} = \text{q(Ancestor)}
\]

<table>
<thead>
<tr>
<th>Parent</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>Bart</td>
</tr>
<tr>
<td>Homer</td>
<td>Lisa</td>
</tr>
<tr>
<td>Marge</td>
<td>Bart</td>
</tr>
<tr>
<td>Marge</td>
<td>Lisa</td>
</tr>
<tr>
<td>Abe</td>
<td>Homer</td>
</tr>
<tr>
<td>Ape</td>
<td>Abe.</td>
</tr>
</tbody>
</table>

\[
\text{Parent(parent, child)}
\]

\[
\text{anc desc}
\]

Intuition behind fixed-point iteration

- Initially, we know nothing about ancestor-descendent relationships
- In the first step, we deduce that parents and children form ancestor-descendent relationships
- In each subsequent steps, we use the facts deduced in previous steps to get more ancestor-descendent relationships
- We stop when no new facts can be proven

Linear recursion

- With linear recursion, a recursive definition can make only one reference to itself

Non-linear:

\[
\text{WITH Ancestor(anc, desc) AS }
\begin{cases}
\text{(SELECT parent, child FROM Parent) }
\text{UNION}
\text{(SELECT a1.anc, a2.desc FROM Ancestor a1, Ancestor a2)}
\text{WHERE a1.desc = a2.anc)}
\end{cases}
\]

Linear:

\[
\text{WITH Ancestor(anc, desc) AS }
\begin{cases}
\text{(SELECT parent, child FROM Parent) }
\text{UNION}
\text{(SELECT anc, child FROM Ancestor, Parent WHERE desc = parent)}
\end{cases}
\]

Linear vs. non-linear recursion

- Linear recursion is easier to implement
 - For linear recursion, just keep joining newly generated Ancestor rows with Parent
 - For non-linear recursion, need to join newly generated Ancestor rows with all existing Ancestor rows
- Non-linear recursion may take fewer steps to converge
 - Example: \(a \rightarrow b \rightarrow c \rightarrow d \rightarrow e\)
 - Linear recursion takes 4 steps
 - Non-linear recursion takes 3 steps

Mutual recursion example

- Table Natural \(n\) contains 1, 2, \ldots, 100
- Which numbers are even/odd?
 - An odd number plus 1 is an even number
 - An even number plus 1 is an odd number
 - 1 is an even number

\[
\text{WITH Even(n) AS }
\begin{cases}
\text{(SELECT n FROM Natural WHERE n = ANY(SELECT n+1 FROM Odd)),}
\text{Odd(n) AS }
\begin{cases}
\text{(SELECT n FROM Natural WHERE n = 1) }
\text{UNION}
\text{(SELECT n FROM Natural WHERE n = ANY(SELECT n+1 FROM Even))}
\end{cases}
\end{cases}
\]

Operational semantics of WITH

- \(\text{WITH } R_1, \ldots, R_n \text{ AS } Q_1, \ldots, Q_n\)
- \(Q;\)
 - \(Q_1, \ldots, Q_n\) may refer to \(R_1, \ldots, R_n\)
- Operational semantics
 1. \(R_1 \leftarrow \emptyset, \ldots, R_n \leftarrow \emptyset\)
 2. Evaluate \(Q_1, \ldots, Q_n\) using the current contents of \(R_1, \ldots, R_n\)
 3. If \(R_i^\text{new} \neq R_i\) for any \(i\)
 3.1. \(R_i \leftarrow R_i^\text{new}\)
 3.2. Go to 2.
 4. Compare \(Q\) using the current contents of \(R_1, \ldots, R_n\) and output the result
Computing mutual recursion

WITH Even(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Odd))
UNION
(SELECT n FROM Natural
WHERE n = 1)
Odd(n) AS
(SELECT n FROM Natural
WHERE n = ANY(SELECT n+1 FROM Even))

- Even = ∅, Odd = ∅
- Even = {2}, Odd = {1}
- Even = {2}, Odd = {1, 3}
- Even = {2, 4}, Odd = {1, 3}
- Even = {2, 4}, Odd = {1, 3, 5}
- ...

Mixing negation with recursion

- If q is non-monotone
 - The fixed-point iteration may flip-flop and never converge
 - There could be multiple minimal fixed points—so which one is the right answer?
- Example: reward students with GPA higher than 3.9
 - Those not on the Dean’s List should get a scholarship
 - Those without scholarships should be on the Dean’s List
- WITH Scholarship(SID) AS
 (SELECT SID FROM Student
 WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM DeansList)),
 DeansList(SID) AS
 (SELECT SID FROM Student
 WHERE GPA > 3.9
 AND SID NOT IN (SELECT SID FROM Scholarship))

Multiple minimal fixed points

WITH Scholarship(SID) AS
(SELECT SID FROM Student
WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM DeansList)),
DeansList(SID) AS
(SELECT SID FROM Student
WHERE GPA > 3.9
AND SID NOT IN (SELECT SID FROM Scholarship))

Legal mix of negation and recursion

- Construct a dependency graph
 - One node for each table defined in WITH
 - A directed edge \(R \to S \) if \(R \) is defined in terms of \(S \)
 - Label the directed edge “−” if the query defining \(R \) is not monotone with respect to \(S \)
- Legal SQL3 recursion: no cycle containing a “−” edge
 - Called stratified negation
- Bad mix: a cycle with at least one edge labeled “−”
Stratified negation example

- Find pairs of persons with common ancestors

WITH Ancestor(anc, desc) AS
(SELECT parent, child FROM Parent) UNION
(SELECT a1.anc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.desc = a2.anc),
Person(person) AS
(SELECT parent FROM Parent) UNION
(SELECT child FROM Parent),
NoCommonAnc(person1, person2) AS
(SELECT p1.person, p2.person
FROM Person p1, Person p2
WHERE p1.person <> p2.person)
EXCEPT
(SELECT a1.desc, a2.desc
FROM Ancestor a1, Ancestor a2
WHERE a1.anc = a2.anc)
SELECT * FROM NoCommonAnc;

Evaluating stratified negation

- The stratum of a node R is the maximum number of "–" edges on any path from R in the dependency graph
 - Ancestor: stratum 0
 - Person: stratum 0
 - NoCommonAnc: stratum 1

Evaluation strategy
- Compute tables lowest-stratum first
- For each stratum, use fixed-point iteration on all nodes in that stratum
 - Stratum 0: Ancestor and Person
 - Stratum 1: NoCommonAnc

- Intuitively, there is no negation within each stratum

Summary

- SQL3 WITH recursive queries
- Solution to a recursive query (with no negation): unique minimal fixed point
- Computing unique minimal fixed point: fixed-point iteration starting from ∅
- Mixing negation and recursion is tricky
 - Illegal mix: fixed-point iteration may not converge; there may be multiple minimal fixed points
 - Legal mix: stratified negation (compute by fixed-point iteration stratum by stratum)