Query optimization

- One logical plan → “best” physical plan
- Questions
 - How to enumerate possible plans
 - How to estimate costs
 - How to pick the “best” one
- Often the goal is not getting the optimum plan, but instead avoiding the horrible ones

Plan enumeration in relational algebra

- Apply relational algebra equivalences
- Join reordering: \(\times \) and \(\bowtie \) are associative and commutative (except column ordering, but that is unimportant)
More relational algebra equivalences

- Convert \(\sigma_p \times \) to/from \(\bowtie_p \): \(\sigma_p(R \times S) = R \bowtie_p S \)
- Merge/split \(\sigma \)'s: \(\sigma_p_1(\sigma_p_2 R) = \sigma_{p_1 \land p_2} R \)
- Merge/split \(\pi \)'s: \(\pi_{L_1}(\pi_{L_2} R) = \pi_{L_1} R \), where \(L_1 \subseteq L_2 \)
- Push down/pull up \(\sigma \): \(\sigma_p \land \land_1 \land_2 (R \bowtie S) = (\sigma_p_1 R) \bowtie_2 (\sigma_p_2 S) \), where
 - \(pr \) is a predicate involving only \(R \) columns
 - \(ps \) is a predicate involving only \(S \) columns
 - \(p \) is a predicate involving both \(R \) and \(S \) columns
- Push down \(\pi \): \(\pi_L (\sigma_p R) = \pi_L (\sigma_p (\pi_{L'} R)) \), where
 - \(L' \) is the set of columns referenced by \(p \) that are not in \(L \)
- Many more (seemingly trivial) equivalences...
 - Can be systematically used to transform a plan to new ones

Relational query rewrite example

Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
 - Why?
 - Why not?
- Join smaller relations first, and avoid cross product
 - Why?
 - Why not?
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)
SQL query rewrite

- More complicated—subqueries and views divide a query into nested "blocks"
 - Processing each block separately forces particular join methods and join order
 - Even if the plan is optimal for each block, it may not be optimal for the entire query
- unnest query: convert subqueries/views to joins
 - We can just deal with select-project-join queries
 - Where the clean rules of relational algebra apply

SQL query rewrite example

- SELECT name
 FROM Student
 WHERE SID = ANY (SELECT SID FROM Enroll);
- SELECT name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID;
 - Wrong
- SELECT name
 FROM (SELECT DISTINCT Student.SID, name
 FROM Student, Enroll
 WHERE Student.SID = Enroll.SID);
 - Right

Dealing with correlated subqueries

- SELECT CID FROM Course
 WHERE title LIKE 'CPS'
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- SELECT CID
 FROM Course, (SELECT CID, COUNT(*) AS cnt
 FROM Enroll GROUP BY CID) t
 WHERE t.CID = Course.CID AND min_enroll > t.cnt
 AND title LIKE 'CPS';
 - New subquery is inefficient (computes enrollment for all courses)
 - Suppose
“Magic” decorrelation

- SELECT CID FROM Course
 WHERE title LIKE ‘CPS%’
 AND min_enroll > (SELECT COUNT(*) FROM Enroll
 WHERE Enroll.CID = Course.CID);
- CREATE VIEW Supp_Course AS
 SELECT * FROM Course WHERE title LIKE ‘CPS%’;
- CREATE VIEW Magic AS
 SELECT DISTINCT CID FROM Supp_Course;
- CREATE VIEW DS AS
 (SELECT Enroll.CID, COUNT(*) AS cnt
 FROM Magic, Enroll WHERE Magic.CID = Enroll.CID
 GROUP BY Enroll.CID) UNION
 (SELECT Magic.CID, 0 AS cnt
 FROM Magic
 WHERE Magic.CID NOT IN (SELECT CID FROM Enroll));
- SELECT Supp_Course.CID FROM Supp_Course, DS
 WHERE Supp_Course.CID = DS.CID
 AND min_enroll > DS.cnt;

Heuristics- vs. cost-based optimization

- Heuristics-based optimization
 - Apply heuristics to rewrite plans into cheaper ones
- Cost-based optimization
 - Rewrite logical plan to combine “blocks” as much as possible
 - Optimize query block by block
 - Enumerate logical plans (already covered)
 - Estimate the cost of plans
 - Pick a plan with acceptable cost
 - Focus: select-project-join blocks

Cost estimation

Physical plan example:

- PROJECT (title)
- MERGE-JOIN (CID)
- SCAN (Course)
- SORT (CID)
- MERGE-JOIN (SID)
- SCAN (Enroll)
- FILTER (name = "Bart")
- SORT (SID)
- SCAN (Student)

- We have: cost estimation for each operator
 - Example: SORT(CID) takes $2 \times B(input)$
 - But what is $B(input)$?
- We need: size of intermediate results
Selections with equality predicates

\[Q: \sigma_A = v \text{ } R \]

- Suppose the following information is available:
 - Size of \(R \): |\(R \) |
 - Number of distinct \(A \) values in \(R \): |\(\pi_A R \) |

- Assumptions:
 - Values of \(A \) are uniformly distributed in \(R \)
 - Values of \(v \) in \(Q \) are uniformly distributed over all \(R \) \(A \) values

\[
| Q | \approx | R | / | \pi_A R |
\]

- Selectivity factor of \((A = v) \) is \(1 / | \pi_A R | \)

Conjunctive predicates

\[Q: \sigma_A = u \text{ and } B = v \text{ } R \]

- Additional assumptions:
 - \((A = u) \) and \((B = v) \) are independent
 - Counterexample: major and advisor
 - No "over"-selection
 - Counterexample: \(A \) is the key

\[
| Q | \approx | R | / (| \pi_A R | \cdot | \pi_B R |)
\]

- Reduce total size by all selectivity factors

Negated and disjunctive predicates

\[Q: \sigma_A \neq v \text{ } R \]

\[
| Q | \approx | R | \cdot (1 - 1 / | \pi_A R |)
\]

- Selectivity factor of \(\neg \) is \((1 - \text{ selectivity factor of } \neg) \)

\[Q: \sigma_A = u \text{ or } B = v \text{ } R \]

\[
| Q | \approx | R | \cdot (1 / | \pi_A R | + 1 / | \pi_B R |)
\]

- No! Tuples satisfying \((A = u) \) and \((B = v) \) are counted twice

\[
| Q | \approx | R | \cdot (1 - (1 / | \pi_A R |) \cdot (1 - 1 / | \pi_B R |))
\]

- Intuition: \((A = u) \) or \((B = v) \) is equivalent to
 \(\neg(\neg (A = u) \text{ AND } \neg (B = v)) \)
Range predicates

- \(Q: \sigma_{A > v} R \)
- Not enough information!
 - Just pick, say, \(|Q| \approx |R| \cdot 1/3\)
- With more information
 - Largest \(R.A \) value: high(\(R.A \))
 - Smallest \(R.A \) value: low(\(R.A \))
 - \(|Q| \approx |R| \cdot \frac{(\text{high}(R.A) - v)}{(\text{high}(R.A) - \text{low}(R.A))}\)
 - In practice: sometimes the second highest and lowest are used instead
 - The highest and the lowest are often used by inexperienced database designer to represent invalid values!

Two-way equi-join

- \(Q: R(A, B) \bowtie S(A, C) \)
- Assumption: containment of value sets
 - Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if \(|\pi_A R| \leq |\pi_A S|\) then \(\pi_A R \subseteq \pi_A S \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
- \(|Q| \approx |R| \cdot |S| / \max(\pi_A R, |\pi_A S|)\)
 - Selectivity factor of \(R.A = S.A \) is \(1 / \max(\pi_A R, |\pi_A S|)\)

Multiway equi-join

- \(Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D) \)
- What is the number of distinct \(C \) values in the join of \(R \) and \(S \)?
- Assumption: preservation of value sets
 - A non-join attribute does not lose values from its set of possible values
 - That is, if \(A \) is in \(R \) but not \(S \), then \(\pi_A (R \bowtie S) = \pi_A R \)
 - Certainly not true in general
 - But holds in the common case of foreign key joins
Multiway equi-join (cont’d)

- $Q: R(A, B) \bowtie S(B, C) \bowtie T(C, D)$
- Start with the product of relation sizes
 - $|R| \cdot |S| \cdot |T|$
- Reduce the total size by the selectivity factor of each join predicate
 - $R.B = S.B: 1/\max(|\pi_B R|, |\pi_B S|)$
 - $S.C = T.C: 1/\max(|\pi_C S|, |\pi_C T|)$
 - $|Q| \approx (|R| \cdot |S| \cdot |T|)/$\(\max(|\pi_B R|, |\pi_B S|) \cdot \max(|\pi_C S|, |\pi_C T|))$

Cost estimation: summary

- Using similar ideas, we can estimate the size of projection, duplicate elimination, union, difference, aggregation (with grouping)
- Lots of assumptions and very rough estimation
 - Accurate estimate is not needed
 - Maybe okay if we overestimate or underestimate consistently
 - May lead to very nasty optimizer “hints”
 - SELECT * FROM Student WHERE GPA > 3.9;
 - SELECT * FROM Student WHERE GPA > 3.9 AND GPA > 3.9;
- Not covered: better estimation using histograms

Search for the best plan

- Huge search space
- “Bushy” plan example:

- Just considering different join orders, there are close to $(n-1)! \cdot 4^{n-1}$ bushy plans for $R_1 \bowtie R_2 \bowtie \cdots \bowtie R_n$
 - 30240 for $n = 6$
- And there are more if we consider:
 - Multiway joins
 - Different join methods
 - Placement of selection and projection operators
Left-deep plans

- Heuristic: consider only "left-deep" plans, in which only the left child can be a join
 - Tend to be better than plans of other shapes, because many join algorithms scan inner (right) relation multiple times—you will not want it to be a complex subtree
- How many left-deep plans are there for $R_1 \bowtie \cdots \bowtie R_n$?
 - Significantly fewer, but still lots

A greedy algorithm

- S_1, \ldots, S_n
 - Say selections have been pushed down; i.e., $S_i = \sigma_{p_i} R_i$
- Start with the pair S_i, S_j with the smallest estimated size for $S_i \bowtie S_j$
- Repeat until no relation is left:
 - Pick S_k from the remaining relations such that the join of S_k and the current result yields an intermediate result of the smallest size

A dynamic programming approach

- Generate optimal plans bottom-up
 - Pass 1: Find the best single-table plans (for each table)
 - Pass 2: Find the best two-table plans (for each pair of tables) by combining best single-table plans
 - …
 - Pass k: Find the best k-table plans (for each combination of k tables) by combining two smaller best plans found in previous passes
 - …
- Rationale: Any subplan of an optimal plan must also be optimal (otherwise, just replace the subplan to get a better overall plan)
 - Well, not quite…
The need for “interesting order”

- Example: \(R(A, B) \bowtie S(A, C) \bowtie T(A, D) \)
- Best plan for \(R \bowtie S \): hash join (beats sort-merge join)
- Best overall plan: sort-merge join \(R \) and \(S \), and then sort-merge join with \(T \)
 - Subplan of the optimal plan is not optimal!
- Why?
 - The result of the sort-merge join of \(R \) and \(S \) is sorted on \(A \)
 - This is an interesting order that can be exploited by later processing (e.g., join, duplicate elimination, \texttt{GROUP BY}, \texttt{ORDER BY}, etc.)!

Dealing with interesting orders

- When picking the best plan
 - Comparing their costs is not enough
 - Plans are not totally ordered by cost anymore
 - Comparing interesting orders is also needed
 - Plans are now partially ordered
 - Plan \(X \) is better than plan \(Y \) if
 - Cost of \(X \) is lower than \(Y \)
 - Interesting orders produced by \(X \) subsume those produced by \(Y \)
- Need to keep a set of optimal plans for joining every combination of \(k \) tables
 - Typically one for each interesting order

Summary

- Relational algebra equivalence
- SQL rewrite tricks
- Heuristics-based optimization
- Cost-based optimization
 - Need statistics to estimate sizes of intermediate results
 - Greedy approach
 - Dynamic programming approach