Importance of Language

- Vehicle for programming
- Use for human and machine communications
- Syntax Rules
 - First pass already covered
 - Need to refine to notation
 - Must be suitable for machine to do
- In addition, need to deal with the meaning
- Also, should see Levels or Layers in dealing with computer
 1. Hardware
 2. Machine language
 3. Assembler
 4. Java (or other high-level language)
 5. Application (e.g. Word, Excel, Filemaker, ...)

Language Translation

- *Goal* is to automatically translate Java:
 - \(z = x + y; \)
- to Assembler:
 - `copy ax, x`
 - `add ax, y`
 - `copy z, ax`

 What is the *meaning* we are looking for?

 Machine gives assembler statements meaning because the machine knows what to do with them (after trivial translation to binary). E.g., the machine knows what `add` means.

Revise Syntactic Rules

- Need to revise Syntactic Production Rules
 - New rule:
 - R1: \(<n>j \rightarrow \) a sequence of letters and/or digits that been with a letter
 - Replaces (have seen these before)
 - R1: \(<name> \rightarrow \) a sequence of letters and/or digits that been with a letter
 - The new R1 says “change \(<n>j\) into a sequence of letters and/or digits that begin with a letter”
- Use rules to *modify strings*
 - For syntactic productions, must end up with valid Java Programs

Using Syntax Rules

- Examples using R1:
 - \(<n>3 \rightarrow x\)
 - Or
 - \(<n>6 \rightarrow data\)
 - Where “n” stand for “name”
- Further use of R1:
 - \(<n>3 + <n>6\)
 - Use \(<n>3\) and \(<n>6\) above to get
 - \((x + data)\)
- More Rules:
 - R2: \(<e> \rightarrow <n>j\)
 - Where “e” stands for “expression”
 - Example:
 - \(<e>1 \rightarrow <n>3\)
Using Syntax Rules

- and
 - R3: \(<s>k \rightarrow <n>j = <e>i \);

 Where "s" stands for "statement"

 It says "\(<s>k\)" can be replaced by "\(<n>j = <e>i \);"

- Can now do: \(\text{ans} = \text{data} \);

 derivation rule

 \(\langle s \rangle 1 \rightarrow \langle n \rangle 2 \rightarrow \langle e \rangle 3 \);

 \(\langle n \rangle 2 = \langle e \rangle 3 \);

 \(\text{ans} = \langle e \rangle 3 \);

 \(\text{R1: } \langle n \rangle 2 \rightarrow \text{ans} \);

 \(\text{R2: } \langle e \rangle 3 \rightarrow \langle n \rangle 4 \);

 \(\text{ans} = \langle n \rangle 4 \);

 \(\text{R1: } \langle n \rangle 4 \rightarrow \text{data} \);

 \(\text{ans} = \text{data} \);

More Rules

- Need two more rules to make it worthwhile

 - R4: \(<e>i \rightarrow (<e>j + <e>k) \)

 - R5: \(<e>i \rightarrow (<e>j * <e>k) \)

 These are additional rules for expressions

- Can now handle \(\text{ANS} = (X + (Y * Z)) \);

 (notice shorthand/simplification used)

Longer Example \(\text{ANS} = (X + (Y * Z)) \);

- derivation rule

 \(s1 \rightarrow n2 = e3 ; \)

 \(n2 = e3 ; \)

 \(\text{ANS} = e3 ; \)

 \(\text{ANS} = (e4 + e5) ; \)

 \(\text{ANS} = (n6 + e5) ; \)

 \(\text{ANS} = (X + e5) ; \)

 \(\text{ANS} = (X + (e7 * e8)) ; \)

 \(\text{ANS} = (X + (n9 * e8)) ; \)

 \(\text{ANS} = (X + (Y * e8)) ; \)

 \(\text{ANS} = (X + (Y * n10)) ; \)

 \(\text{ANS} = (X + (Y * Z)) ; \)

Notes

- Abbreviations

 - Just omitted the angle brackets. Could do this because the notation remained unambiguous.

- Role of the subscripts

 - The subscripts are required to make sure each term is unique.

 - Simplest technique is to simply start at one and increment every time another subscript is specified.

- Simple substitution is all that is required

 - If you are doing something more than that, it is probably wrong!

- The notation and form are important

 - You will be expected to match them on tests.