Today's topics

Computer Hardware
Electric Circuits

Upcoming
Computer Communications
 (Great Ideas Chapter 10)

Reading
 (not in text)

The Hardware Level

- Levels of a Computer System
 - Applications
 - Java
 - Machine Architecture/Assembler
 - Electric Circuits
- Circuits: Water Model
 - Reservoir
 - Pump
 - Paddle wheel/turbine
- Circuits: The real thing = electrons
 - Battery / generator
 - Heat -> Light
 - Motors

Expressing Logic in Circuits

- Circuits with switches (e.g. knife switch)
 - Use battery, switch, and light bulb

- Light, L, turns on when switch, X, is depressed
- For anything more complicated, we will use 3 notations
 - Truth Table
 - Circuit Diagram
 - Boolean Expression

Simple Logic

- Define the AND operator

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- You should no how to get from one notation to another
 - I.e., given circuit, come up with table or expression
Simple Logic

- Define the OR operator

\[
\begin{array}{ccc}
X & Y & L \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[L = X + Y\]

Circuit

You should know how to get from one notation to another
- I.e., given circuit, come up with table or expression

Simple Logic

- Define the NOT operator

\[
\begin{array}{cc}
X & L \\
0 & 1 \\
1 & 0 \\
\end{array}
\]

\[L = \overline{X}\]

Circuit

You should know how to get from one notation to another
- I.e., given circuit, come up with table or expression

More Complex Logic

- Some fairly arbitrary circuits shown on web page
- Deal with general 3 input circuit

Truth Table

\[
\begin{array}{cccc}
X & Y & Z & L \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

What are the alternate forms?

Relays

- Relays are an electrically controlled switch
 - Uses electromagnet
 - May have several switches set by one magnet
 - (Shown with dotted line or “string” on diagrams)

- Look at several examples on web site
Designing a Relay Memory Element

- Web shows step by step sequence that leads to a bi-stable element
 - Called a latch
 - “Remembers” previous setting
 - Thus represents 1 bit of memory

Binary Numbers

- Table of binary (and decimal) numbers (continued)

<table>
<thead>
<tr>
<th>binary</th>
<th>dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0</td>
<td>8</td>
</tr>
<tr>
<td>0 0 0 1 0 1</td>
<td>9</td>
</tr>
<tr>
<td>0 0 1 0 0 2</td>
<td>10</td>
</tr>
<tr>
<td>0 0 1 1 0 3</td>
<td>11</td>
</tr>
<tr>
<td>0 1 0 0 0 4</td>
<td>12</td>
</tr>
<tr>
<td>0 1 0 1 0 5</td>
<td>13</td>
</tr>
<tr>
<td>0 1 1 0 0 6</td>
<td>14</td>
</tr>
<tr>
<td>0 1 1 1 0 7</td>
<td>15</td>
</tr>
<tr>
<td>1 0 0 1 0 9</td>
<td>10</td>
</tr>
<tr>
<td>1 0 1 0 1 0</td>
<td>11</td>
</tr>
<tr>
<td>1 0 1 1 1 1</td>
<td>12</td>
</tr>
<tr>
<td>1 1 0 0 1 2</td>
<td>13</td>
</tr>
<tr>
<td>1 1 0 1 1 3</td>
<td>14</td>
</tr>
<tr>
<td>1 1 1 0 1 4</td>
<td>15</td>
</tr>
<tr>
<td>1 1 1 1 1 5</td>
<td>16</td>
</tr>
</tbody>
</table>