Today’s topics

Computer Hardware
 Electric Circuits
 Designing an Adder

Upcoming
 Computer Communications
 (Great Ideas Chapter 10)

Reading
 (not in text)
Binary Addition ($Z = X + Y$)

- Like Decimal, but---
 - Have only two symbols: 0, 1
- At first, seems like *two* “inputs” will do

 $X: \quad 10010$

 $Y: \quad +01001$

 $Z: \quad 11011$

- Looking at it
 - From right: $0+1 = 1; 1+0 = 1; 0+0 = 0; 0+1 = 1; 1+0 = 1$
 - However, example not realistic
 - Must deal with possible carries
 - Need better example
Binary Addition \((Z = X + Y)\) (+carry)

- Let’s try

 \[
 \begin{align*}
 C & : 001100100 \\
 X & : 100110011 \\
 Y & : +000110010 \\
 Z & : 101100101
 \end{align*}
 \]

- Must add a top row for carries to get whole picture

- To add two number (by columns) takes *three* inputs

 - \(X, Y\) and \(C\) (for carry)
 - So, *from right*: \(0+0+1 = 1\) (carry 0); \(0+1+1 = 0\) (carry 1); \(1+0+0 = 1\) (carry 0); \(0+1+1 = 0\) (carry 1); \(0+0+0 = 0\) (carry 0); \(0+1+1 = 0\) (carry 1); \(1+1+1 = 1\) (carry 1); \(1+0+0 = 1\) (carry 0); \(0+0+0 = 0\) (carry 0); \(0+1+0 = 1\) (carry 0)
Truth Tables for Addition

- We need two 3-input truth tables
 - One for the resulting *Sum* bit
 - One for the resulting *Carry* bit

Sum:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$$S = X'Y'C + X'YC' + XY'C' + XYC$$
Truth Tables for Addition

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[C = X'Y'C + X'Y'C + XY'C' + X'Y'C \]
The 4 bit Adder

- Now have the building-blocks to put together an Adder of arbitrary size
- Design in several steps (illustrated by drawings on web page)
 1. Block Diagram
 2. Simple Adder
 3. Control Section
 4. Putting it all together: The 4 Bit Adder
- Will be on quizzes and/or Final Exam
- Learn how to go through circuits and *mark them*
- May encounter different circuits
 - E.g., a Subtractor
 - Same marking methods will apply