Today’s Topics

Computer Science
 Program Execution Time:
 Intractable Algorithms

Upcoming
 Parallel Computing
 Great Ideas, Chapter 14

Reading
 Great Ideas, Chapter 13
On the Limits of Computing

• Intractable Algorithms
 - Computer "crawls" or seems to come to halt for large N
 - Large problems *essentially unsolved*
 - May never be able to compute answer for some obvious questions

• Chess
 - Note: here N is number of moves looking ahead
 - We Have an Algorithm!
 - Layers of look-ahead: If I do this, then he does this,
 - Problem Solved (?!)
 - Can Represent Possibilities by Tree
 - Assume 10 Possibilities Each Move
 - \(t = A \times 10^N \)

• Exponential !!!
Exponential Algorithms

- Sample Numbers
 - Get BIG very rapidly
 - Numbers seem to EXPLODE
 - At each step, amount of work multiplies rather than adds
- Exponential = Intractable
- Traveling Salesperson Example
 - Visit N Cities in Optimal Order
 - Optimize for minimum:
 - Time
 - Distance
 - Cost
- N factorial (N!) Possibilities
- N! is (very) roughly N^N
 - Stirling’s approximation: N! = sqrt(2*Pi*N)*(N/e)^N
- Typical of some very practical problems
Traveling Salesperson Examples

- 3 cities $2! = 2$ possible routes (1 of interest)
 - abc
 - acb
- 4 cities $3! = 6$ possible routes (3 of interest)
 - abcd
 - abdc
 - acbd
 - acdb
 - acbd
 - adbc
 - adcb

- Only half usually of interest because just reverse of another path
Traveling Salesperson Examples

5 cities 4! = 24 possible routes

- abcde
- abced
- abdce
- abdec
- abecd
- abedc
- acbde
- acbed
- acdbe
- acdeb
- acebd
- acedeb
- acedbc

(12 of interest)

- adbce
- adbce
- adcbe
- adceb
- adebc
- adecb
- aedbc
- aedcb
Towers of Hanoi

The Towers of Hanoi is a mathematical puzzle where N discs of varying radii are moved from one of three pegs to another, with the rule that a larger disc cannot be placed on a smaller one.

The time t it takes to solve the puzzle, for a very old PC, is given by the formula:

$$t = 0.00549 \times 2^N$$

<table>
<thead>
<tr>
<th>N</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.17 sec</td>
</tr>
<tr>
<td>10</td>
<td>5.62 sec</td>
</tr>
<tr>
<td>15</td>
<td>3.00 min</td>
</tr>
<tr>
<td>20</td>
<td>1.6 hour</td>
</tr>
<tr>
<td>25</td>
<td>2.13 day</td>
</tr>
<tr>
<td>30</td>
<td>68.23 day</td>
</tr>
<tr>
<td>35</td>
<td>5.98 year</td>
</tr>
<tr>
<td>40</td>
<td>191.3 year</td>
</tr>
<tr>
<td>45</td>
<td>6120 year</td>
</tr>
<tr>
<td>50</td>
<td>196 K year</td>
</tr>
<tr>
<td>55</td>
<td>6.27 M year</td>
</tr>
<tr>
<td>60</td>
<td>201 M year</td>
</tr>
<tr>
<td>65</td>
<td>6.42 G year</td>
</tr>
<tr>
<td>70</td>
<td>205 G year</td>
</tr>
</tbody>
</table>
Intractable Algorithms

- Other Games
- More hardware not the answer!
- Predicting Yesterday's Weather
- Actual Examples for Time Complexity