Binary Trees

- Linked lists have efficient insertion and deletion, but inefficient search
 - Vector/array: search can be efficient, insertion/deletion not
- Binary trees are structures that yield efficient insertion, deletion, and search
 - trees used in many contexts, not just for searching, e.g., expression trees
 - search is as efficient as binary search in array, insertion/deletion as efficient as linked list (once node found)
 - binary trees are inherently recursive, difficult to process trees non-recursively, but possible (recursion never required, but often makes coding/algorithms simpler)
From doubly-linked lists to binary trees

- Instead of using prev and next to point to a linear arrangement, use them to divide the universe in half
 - Similar to binary search, everything less goes left, everything greater goes right
 - How do we search?
 - How do we insert?
Basic tree definitions

- **Binary tree is a structure:**
 - empty
 - *root node with left and right subtrees*
- **terminology:** parent, children, leaf node, internal node, depth, height, path
 - link from node N to M then N is *parent* of M
 - M is *child* of N
 - *leaf node has no children*
 - internal node has 1 or 2 children
 - *path* is sequence of nodes, $N_1, N_2, \ldots N_k$
 - N_i is parent of N_{i+1}
 - sometimes edge instead of node
 - *depth* (level) of node: length of root-to-node path
 - level of root is 1 (measured in nodes)
 - *height* of node: length of longest node-to-leaf path
 - height of tree is height of root
Printing a search tree in order

- **When is root printed?**
 - After left *subtree*, before right *subtree*.

```cpp
void visit(Node * t) {
    if (t != 0) {
        visit(t->left);
        cout << t->info << endl;
        visit(t->right);
    }
}
```

- **Inorder traversal**
Insertion and Find? Complexity?

- How do we search for a value in a tree, starting at root?
 - Can do this both iteratively and recursively, contrast to printing which is very difficult to do iteratively
 - How is insertion similar to search?

- What is complexity of print? Of insertion?
 - Is there a worst case for trees?
 - Do we use best case? Worst case? Average case?

- How do we define worst and average cases
 - For trees? For vectors? For linked lists? For vectors of linked-lists?
From concept to code with binary trees

- Trees can have many shapes: short/bushy, long/stringy
 - if height is \(h \), number of nodes is between \(h \) and \(2^h - 1 \)
 - single node tree: height = 1, if height = 3

- C++ implementation, similar to doubly-linked list

```cpp
struct Tree
{
    string info;
    Tree * left;
    Tree * right;
    Tree(const string& s, Tree * lptr, Tree * rptr)
        : info(s), left(lptr), right(rptr)
    {
    };
}
```
Tree functions

- **Compute height of a tree, what is complexity?**

```c
int height(Tree * root)
{
    if (root == 0) return 0;
    else {
        return 1 + max(height(root->left),
                        height(root->right));
    }
}
```

- **Modify function to compute number of nodes in a tree, does complexity change?**
 - **What about computing number of leaf nodes?**
Tree traversals

- Different traversals useful in different contexts
 - Inorder prints search tree in order
 - Visit left-subtree, process root, visit right-subtree
 - Preorder useful for reading/writing trees
 - Process root, visit left-subtree, visit right-subtree
 - Postorder useful for destroying trees
 - Visit left-subtree, visit right-subtree, process root
Insertion into search tree

● Simple recursive insertion into tree

```cpp
void insert(Tree *& t, const string& s)
// pre: t is a search tree
// post: s inserted into t, t is a search tree
{
    if (t == 0)
        t = new Tree(s,0,0);
    else if (s <= t->left) insert(t->left,s);
    else insert(t->right,s);
}
```

● Note: in each recursive call, the parameter t in the called clone is either the left or right pointer of some node in the original tree
 - Why is this important?
 - Why must t be passed by reference?
 - For alternatives see readsettree.cpp
Balanced Trees and Complexity

- A tree is height-balanced if
 - Left and right subtrees are height-balanced
 - Left and right heights differ by at most one

```cpp
bool isBalanced(Tree * root) {
    if (root == 0) return true;
    else {
        return isBalanced(root->left) &&
               isBalanced(root->right) &&
               abs(height(root->left) - height(root->right)) <= 1;
    }
}
```
What is complexity?

- Assume trees are “balanced” in analyzing complexity
 - Roughly half the nodes in each subtree
 - Leads to easier analysis

- How to develop recurrence relation?
 - What is T(n)?
 - What other work is done?

- How to solve recurrence relation
 - Plug, expand, plug, expand, find pattern
 - A real proof requires induction to verify that pattern is correct
Recognizing Recurrences

- **Solve once, re-use in new contexts**
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - $T(n)$ is the time for quicksort to run on an n-element vector

\[
T(n) = T(n/2) + O(1) \text{ binary search } O(\log n)
\]
\[
T(n) = T(n-1) + O(1) \text{ sequential search } O(n)
\]
\[
T(n) = 2T(n/2) + O(1) \text{ tree traversal } O(n)
\]
\[
T(n) = 2T(n/2) + O(n) \text{ quicksort } O(n \log n)
\]
\[
T(n) = T(n-1) + O(n) \text{ selection sort } O(n^2)
\]

- **Remember the algorithm, re-derive complexity**
Simple header file (see readsettree.cpp)

```cpp
class TreeSet
{
    public:
        TreeSet();
        bool contains(const string& word) const;
        void insert(const string& word);
    
    private:
        
    struct Node
    {
        string info;
        Node * left * right; // need constructor
    };
    Node * insertHelper(Node * root, const string& s);
    Node * myRoot;
};
```
Helper functions in readsettree.cpp

void TreeSet::insert(const string& s)
{
 myRoot = insertHelper(myRoot);
}

TreeSet::Node *
TreeSet::insertHelper(Node * root,const string& s)
{
 // recursive insertion
}

- Why is helper function necessary? Is it really necessary?
 - Alternatives for other functions: print/contains, for example
 - What about const-ness for public/private functions?
 - What about TreeSet::Node syntax? Why?
Balanced Search Trees

- **BST**: efficient lookup, insertion, deletion
 - Average case: $O(\log n)$ for all operations since find is $O(\log n)$ [complexity of insert after find is $O(1)$, why?]
 - Worst case is bad, what's big-Oh? What's the tree shape?
 - If we can guarantee $\log n$ in worst case, why might this be preferable to hashing? Properties of *search* tree?

- **Balanced Search trees**
 - Use rotations to maintain balance, different implementations rotate/rebalance at different times
 - AVL tree is conceptually simple, bookkeeping means coefficient for big-Oh is higher than other ideas
 - Red-black tree harder to code but good performance: basis for Java map classes and most C++ map classes
Balanced trees we won't study

- **B-trees** are used when data is both in memory and on disk
 - File systems, really large data sets
 - Rebalancing guarantees good performance both asymptotically and in practice. Differences between cache, memory, disk are important

- **Splay trees** rebalance during insertion and during search, nodes accessed often move closer to root
 - Other nodes can move further from root, consequences?
 - Performance for some nodes gets better, for others ...
 - No guarantee running time for a single operation, but guaranteed good performance for a sequence of operations, this is good *amortized* cost (vector push_back)
Balanced trees we will study

- Both kinds have worst-case $O(\log n)$ time for tree operations
- AVL (Adel’son-Velskii and Landis), 1962
 - Nodes are “height-balanced”, subtree heights differ by 1
 - Rebalancing requires per-node bookkeeping of height
 - http://www.seanet.com/users/arsen/avltree.html

- Red-black tree uses same rotations, but can rebalance in one pass, contrast to AVL tree
 - In AVL case, insert, calculate balance factors, rebalance
 - In Red-black tree can rebalance on the way down, code is more complex, but doable
 - STL in C++ uses red-black tree for map and set classes
 - Standard `java.util.TreeMap/TreeSet` use red-black
Rotations and balanced trees

- **Height-balanced trees**
 - For every node, left and right subtree heights differ by at most 1
 - After insertion/deletion need to rebalance
 - Every operation leaves tree in a balanced state: *invariant property* of tree

- **Find deepest node that’s unbalanced then make sure:**
 - On path from root to inserted/deleted node
 - Rebalance at this unbalanced point only

Are these trees height-balanced?
Rotation to rebalance

When a node N (root) is unbalanced height differs by 2 (must be more than one)

- Change N->left->left
 - doLeft
- Change N->left->right
 - doLeftRight
- Change N->right->left
 - doRightLeft
- Change N->right->right
 - doRight

- First/last cases are symmetric
- Middle cases require two rotations
 - First of the two puts tree into doLeft or doRight

```
Tree * doLeft(Tree * root)
{
    Tree * newRoot = root->left;
    root->left = newRoot->right;
    newRoot->right = root;
    return newRoot;
}
```
Rotation up close (doLeft)

- Why is this called doLeft?
 - N will no longer be root, new value in left->left subtree
 - Left child becomes new root

- Rotation isn’t “to the left”, but rather “brings left child up”
 - doLeftChildRotate?

```c
Tree * doLeft(Tree * root)
{
    Tree * newRoot = root->left;
    root->left = newRoot->right;
    newRoot->right = root;
    return newRoot;
}
```
Rotation to rebalance

- Suppose we add a new node in right subtree of left child of root
 - Single rotation can’t fix
 - Need to rotate twice
- First stage is shown at bottom
 - Rotate blue node right
 - (its right child takes its place)
 - This is left child of unbalanced

```
Tree * doRight(Tree * root)
{
    Tree * newRoot = root->right;
    root->right = newRoot->left;
    newRoot->left = root;
    return newRoot;
}
```
Double rotation complete

- Calculate where to rotate and what case, do the rotations

Tree * doRight(Tree * root)
{
 Tree * newRoot = root->right;
 root->right = newRoot->left;
 newRoot->left = root;
 return newRoot;
}

Tree * doLeft(Tree * root)
{
 Tree * newRoot = root->left;
 root->left = newRoot->right;
 newRoot->right = root;
 return newRoot;
}
AVL tree practice

- Insert into AVL tree:
 - 18 10 16 12 6 3 8 13 14
 - After adding 16:
 - doLeftRight
 - doLeft
 - doRight
 - After 3, doLeft on 16
AVL practice: continued, and finished

- After adding 13, ok
- After adding 14, not ok
 - doRight at 12
A trie (from retrieval, but pronounced “try”) supports:
- Insertion: a word into the trie (delete and look up)
- These operations are $O(\text{size of string})$ regardless of how many strings are stored in the trie!\textbf{Guaranteed!}

In some ways a trie is like a 128 (or 26 or alphabet-size) tree, one branch/edge for each character/letter:
- Node stores branches to other nodes
- Node stores whether it ends the string from root to it

Extremely useful in DNA/string processing:
- monkeys and typewriter simulation which is similar to some methods used in Natural Language understanding (n-gram methods)
Trie picture and code (see trie.cpp)

- To add string
 - Start at root, for each char create node as needed, go down tree, mark last node

- To find string
 - Start at root, follow links
 - If NULL, not found
 - Check word flag at end

- To print all nodes
 - Visit every node, build string as nodes traversed

- What about union and intersection?
 - Indicates word ends here
Scoreboard

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Insertion</th>
<th>Deletion</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted Vector/array</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorted vector/array</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linked list</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hash Maps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary search tree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVL tree</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **What else might we want to do with a data structure?**
Boggle: Tries, backtracking, structure

Find words on 4x4 grid

- Adjacent letters:
 - $\phi \gamma \eta \iota \varphi \kappa \lambda \mu$
- No re-use in same word

Two approaches to find all words

- Try to form every word on board
 - Look up prefix as you go
 - Trie is useful for prefixes
- Look up every word in dictionary
 - For each word: on board?
- ZEAL and SMILES
void search(int row, int col, TrieNode * t, string soFar)
 // pre: row, col are on board, soFar is valid prefix,
 // string constructed on board during current search
 // t represents the path in the trie of soFar
{
 if (!legal(row,col) || isVisited(row,col)) return;

 char ch = myBoard[row][col]; // check if still a prefix
 Node * child = t->links[ch]; // NOT a prefix, stop
 if (child == 0) return; // still prefix, continue
 // don’t revisit
 markVisited(row,col);
 string newPrefix = word + ch;
 if (child->isWord) cout << newPrefix << endl;

 doFind(row-1,col-1,child,newPrefix); // up-left
 doFind(row-1,col, child,newPrefix); // straight up
 doFind(row-1,col+1,child,newPrefix); // still 5 more calls
 unVisit(row,col); // now ok to revisit
}
bool wordFound(const string& s, const Point& p) {
 // pre: s is suffix of word searched for, prefix so far
 // is found and last letter of found prefix at p(row,col)
 if (s.length() == 0) return true; // no more suffix, done

 tvector<Point> points = myPointsFor(s[0]);

 for(int k=0; k < points.size(); k++) {
 Point nextP = points[k];
 if (IsAdjacent(p,nextP) && ! isVisited(nextP)) {
 markVisited(nextP); // don’t visit again
 if (wordFound(s.substr(1,s.length()-1),nextP)) {
 return true;
 }
 unVisit(nextP); // ok to visit again
 }
 }
 return false; // tried to find s, failed in all attempts
}