Relational Database Design Theory
Part I

CPS 196.3
Introduction to Database Systems

Announcement

- Homework #1 assigned today
 - Due on Friday, September 12 in my office (D327)
- Extra handouts available in a handout box outside my office
- Reminder of the new schedule:
 12:50pm-2:05pm Mondays and Wednesdays

Motivation

- How do we tell if a design is bad, e.g.,
 StudentEnroll (SID, name, CID)?
- How about a systematic approach to detecting and removing redundancy in designs?
 - Dependencies, decompositions, and normal forms
Functional dependencies

- A functional dependency (FD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R.
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y.

```
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>d</td>
</tr>
</tbody>
</table>
```

Must be b Could be anything

FD examples

Address ($street_address, city, state, zip$)

_____ redefined using FD’s
Reasoning with FD’s

Given a relation R and a set of FD’s \mathcal{F}

- Does another FD follow from \mathcal{F}?
 - Are some of the FD’s in \mathcal{F} redundant (i.e., they follow from the others)?
- Is K a key of R?
 - What are all the keys of R?

Attribute closure

- Given R, a set of FD’s \mathcal{F} that hold in R, and a set of attributes Z in R:
 - The closure of Z (denoted Z^+) with respect to \mathcal{F} is the set of all attributes functionally determined by Z
- Algorithm for computing the closure
 - Start with closure $= Z$
 - If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no more attributes can be added

A more complex example

$StudentGrade (SID, name, email, CID, grade)$

- Not a good design, and we will see why later
Example of computing closure

- \mathcal{F} includes:

- $\{ \text{CID, email} \}^+ = ?$

Using attribute closure

Given a relation R and set of FD's \mathcal{F}

- Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \rightarrow Y$ follow from \mathcal{F}

- Is K a key of R?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)

Rules of FD’s

- Armstrong’s axioms
 - Reflexivity: If $Y \subseteq X$, then $X \rightarrow Y$
 - Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
 - Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

- Rules derived from axioms
 - Splitting: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
 - Combining: If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
Using rules of FD’s

Given a relation R and set of FD’s \mathcal{F}

- Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 - Use the rules to come up with a proof
 - Example:
 - \mathcal{F} includes:
 - $SID \rightarrow name, email, email \rightarrow SID, SID, CID \rightarrow grade$
 - $CID, email \rightarrow grade$
 - $email \rightarrow SID$ (given in \mathcal{F})
 - $CID, email \rightarrow CID, SID$ (augmentation)
 - $SID, CID \rightarrow grade$ (given in \mathcal{F})
 - $CID, email \rightarrow grade$ (transitivity)

Non-key FD’s

- Consider a non-trivial FD $X \rightarrow Y$ where X is not a super key
 - Since X is not a super key, there are some attributes (say Z) that are not functionally determined by X

Example of redundancy

- $StudentGrade (SID, name, email, CID, grade)$
- $SID \rightarrow name, email$

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
<th>email</th>
<th>CID</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>142</td>
<td>Bart</td>
<td>bart@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>113</td>
<td>Milhouse</td>
<td>milhouse@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>112</td>
<td>Lisa</td>
<td>lisa@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>114</td>
<td>Ralph</td>
<td>ralph@fox.com</td>
<td>CPS114</td>
<td>B</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Decomposition

- Eliminates redundancy
- To get back to the original relation:

Unnecessary decomposition

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed, and now SID is stored twice!

Bad decomposition
Lossless join decomposition

- Decompose relation \(R \) into relations \(S \) and \(T \)
 - \(\text{attr}(R) = \text{attr}(S) \cup \text{attr}(T) \)
 - \(S = \pi_{\text{attr}(S)}(R) \)
 - \(T = \pi_{\text{attr}(T)}(R) \)
- The decomposition is a lossless join decomposition if, given constraints such as FD’s, we can guarantee that \(R = S \Join T \)
- Any decomposition has \(R \subseteq S \Join T \) (why?)
 - A lossy decomposition is one with \(R \subset S \Join T \)

Loss? But I got more rows!

- “Loss” refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

Questions about decomposition

- When to decompose
- How to come up with a correct decomposition (i.e., lossless join decomposition)
An answer: BCNF

- A relation \(R \) is in Boyce-Codd Normal Form if
 - For every non-trivial FD \(X \rightarrow Y \) in \(R \), \(X \) is a super key
 - That is, all FDs follow from "key \(\rightarrow \) other attributes"

- When to decompose
 - As long as some relation is not in BCNF
- How to come up with a correct decomposition
 - Always decompose on a BCNF violation
 - Then it is guaranteed to be a lossless join decomposition!

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD \(X \rightarrow Y \) in \(R \) where \(X \) is not a super key of \(R \)
- Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \), where \(Z \) contains all attributes of \(R \) that are in neither \(X \) nor \(Y \)
- Repeat until all relations are in BCNF

BCNF decomposition example

StudentGrade (SID, name, email, CID, grade)

BCNF violation: \(SID \rightarrow name, email \)
Another example

StudentGrade (SID, name, email, CID, grade)
BCNF violation:

Why is BCNF decomposition lossless

Given non-trivial $X \rightarrow Y$ in R where X is not a super key of R, need to prove:

- Anything we project always comes back in the join:
 $R \subseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Sure; and it doesn’t depend on the FD
- Anything that comes back in the join must be in the original relation:
 $R \supseteq \pi_{XY}(R) \bowtie \pi_{XZ}(R)$
 - Proof makes use of the fact that $X \rightarrow Y$

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - $$.BNCF$$ decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s