On the Limits of Computing

- **Intractable Algorithms**
 - Computer "crawls" or seems to come to halt for large N
 - Large problems *essentially unsolved*
 - May never be able to compute answer for some obvious questions

- **Chess**
 - Note: here N is number of moves looking ahead
 - We *have* an Algorithm!
 - Layers of look-ahead: If I do this, then he does this, ...!
 - Problem Solved (?!)
 - Can Represent Possibilities by Tree
 - Assume 10 Possibilities Each Move
 - \(t = A \times 10^N \)

- **Exponential !!!**

Exponential Algorithms

- **Recognizing Exponential Growth**
 - Things get **BIG** very rapidly
 - Numbers seem to **EXPLODE**
 - **KEY**: at each added step, work **multiplies** rather than **adds**

- **Exponential = Intractable**

- **Traveling Salesperson Example**
 - Visit N Cities in *Optimal Order*
 - Optimize for minimum:
 - Time
 - Distance
 - Cost

- **N factorial (N!) Possibilities**
 - \(N! \) is (very) roughly \(N^N \)
 - Stirling’s approximation: \(N! = \sqrt{2\pi N} \times (N/e)^N \)

- **Typical of some very practical problems**

Traveling Salesperson Examples

- **3 cities**: \(2! = 2 \) possible routes (1 of interest)
 - abc
 - acb

- **4 cities**: \(3! = 6 \) possible routes (3 of interest)
 - abcd
 - abdc
 - acbd
 - acdb
 - adbc
 - adb

- (Only half usually of interest because just reverse of another path)
Traveling Salesperson Examples

5 cities 4! = 24 possible routes (12 of interest)

- abede
- abced
- abdce
- abdec
- abced
- abdec
- acbde
- acbed
- acdbe
- acebd
- acebd
- acedc
- acedc
- adecb
- adecb
- adecb
- adecb

Towers of Hanoi

\[t = 0.00549 \times 2^N \]

(for a very old PC)

<table>
<thead>
<tr>
<th>(N)</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.17 sec</td>
</tr>
<tr>
<td>10</td>
<td>5.62 sec</td>
</tr>
<tr>
<td>15</td>
<td>3.00 min</td>
</tr>
<tr>
<td>20</td>
<td>1.6 hour</td>
</tr>
<tr>
<td>25</td>
<td>2.13 day</td>
</tr>
<tr>
<td>30</td>
<td>68.23 day</td>
</tr>
<tr>
<td>35</td>
<td>5.98 year</td>
</tr>
<tr>
<td>40</td>
<td>191.3 year</td>
</tr>
<tr>
<td>45</td>
<td>6120 year</td>
</tr>
<tr>
<td>50</td>
<td>196 K year</td>
</tr>
<tr>
<td>55</td>
<td>6.27 M year</td>
</tr>
<tr>
<td>60</td>
<td>201 M year</td>
</tr>
<tr>
<td>65</td>
<td>6.42 G year</td>
</tr>
<tr>
<td>70</td>
<td>205 G year</td>
</tr>
</tbody>
</table>

Intractable Algorithms

- Other Games
- More hardware not the answer!
- Predicting Yesterday's Weather
- Actual Examples for Time Complexity