Today’s Topics

Computer Science 1
Review

Upcoming
Final Exam: Wednesday, 12/8, 7:00pm, B111 BioSci
Review Session: Sunday, 12/5, 5:00-7:00pm, D106 LSRC

Reading
Great Ideas, Chapter 4 - 15

4. Top-Down Programming, Subroutines, and a Database Application

- Functions using Functions
- Getting Information In and Out of Functions
- Class Data: known within class.
- Formal Parameters/Arguments
- Syntax: Using a Function
- Functions that Return Values
- Syntax: Defining a Function
- Larger Problems: How to Deal with the Complexity
 - Divide and Conquer
 - Design: Stepwise Refinement
 - Top-Down Implementation

4. Top-Down Programming, Subroutines, and a Database Application

- "Parallel" Arrays or "Corresponding" Arrays
 - Model Phone Book Capability
 - Typical Access by Name
 - Access by other Fields (other arrays)
- Extend Idea to Database
- Basic Database Functions
- Wild Card Retrieval
- Used Car Database
- Relational Data Bases

4. Top-Down Programming, Subroutines, and a Database Application

- Recursion
 - Factorial (N!)
 - Iterative Approach for Factorial
 - Exponentiation (X^N)
- Church-Markov-Turing Thesis
 - This part of Java lets you solve all kinds of algorithms
5. Graphics, Classes, and Objects

- **Basic Stuff**
 - Canvas class, Graphics class, pixels, Coordinates

- **Graphics Methods**
 - `void drawLine(int x1, int y1, int x2, int y2)`
 - `void drawRect(int x, int y, int width, int height)`
 - `void drawOval(int x, int y, int width, int height)`
 - `void setColor(Color c)`

- **Example: (Using Recursion) Serpinsky.java**

6. Simulation

- **Simulation: Motivation**
- **Optimization, Simulation: Biggest Dog Lot**
- **How Could We Automate Process?**
- **Other Roles For Simulations**
 - Economy, Policy (e.g. birth control), Marketing
 - Camera Lenses, UNC CS Walkthrough, Virtual Reality

- **Simulation in Microelectronics**
 - Logic, Layout, Circuit, Process

- **Design and Manufacturing**

7. Software Engineering

- **Engineering a Program - Programming in the Large**
- **What is Good Software?**
- **Program Life Cycle, Feedback Cycles**
- **Understanding Problem / Specifications**
- **Debugging**
- **Correctness, Proofs?**
- **Documentation**
- **Testing**
- **Bottom Line: Productivity: 15 LINES OF CODE/DAY**
- **Many People? The "Committee": Interaction**
- **Organizational Schemes: e.g. Chief Programmer Team**
7. Software Engineering
 - Killer Robot Scenario
 - Development Models
 - Waterfall
 - Prototyping
 - Testing
 - User Interface
 - Ethics

8. Machine Architecture
 - Architecture (definition)
 - Hardware / Software
 - Basic Computer very primitive
 - Architectural Features
 - Memory
 - CPU: AX, IP, IR, CF
 - Fetch/Execute Cycles
 - Need to handle IF and WHILE situations
 - Tracing (often the only way to understand)
 - Loop Example: Factorial Example
 - Handling Lists or Arrays (Self Modifying Code)
 - Fancier Architecture

9. Language Translation
 - Importance of language
 - Goal: Translate Java To Assembler
 - Revise Syntactic Production Rules (seen before)
 - Use Rules to Modify Strings
 - Add Semantic ("meaning") Components to our Rules
 - Use Syntactic Derivation to Generate Semantic Rules;
 Use Semantic rules to Generate Code
 - Rules for Looping
 - Important: Everything done by simple substitution
 - Everything "adds up"

Electric Circuits
 - Levels of a Computer System
 - Circuits: Water Model (the real thing = electrons)
 - battery, generators, heat -> light, motors
 - Circuits With Switches (e.g. knife switch)
 - Logic/Truth Tables: AND, OR
 - Implementing Logic with Switches
 - Logical (Boolean) Expression
 - Equivalence of:
 - Circuit with Switches, Truth Tables, Boolean Expression
 - Arbitrary Truth table for f(x,y,z)
Electric Circuits

- Relays
- Storing Information (Memory): Latch
- Binary Numbers
 - Conversion to and from Decimal
- Binary Addition
 - Truth Tables
 - Block Diagram
 - Simple Adder Circuit
 - Decoding/Control

12. Computer Communications

- Computer Communications is one of the Great Ideas
- Modes of Communications
- Like Most of Computing: Layers upon Layers
- Basic Communications: In binary
- Connection Mode
 - Circuit Switched, Message Switched, Packet Switched

TCP/IP

- Ethernet (Bus Example)
- Internet -- a network of LANs that are interconnected
- Packets -- the currency of the Internet
- The Layers
 - The Physical Layer, The IP (Internet Protocol) Layer
 - The TCP Layer, The Application Layer

11. Security, Privacy and Wishful Thinking

- Billions in Losses
- Possible Traps in Public Systems
 - Trojan Horse, Onlooker, Digital camera
- Good Passwords and Cracking
 - Briefcase combination lock
 - Analysis of brute force methods
 - Password on a Computer
 - Dictionary Attacks
- Encryption
 - Monoalphabetic Substitution
 - Polyalphabetic Substitution
 - The Vignere Cypher; The Babbit Solution
11. Security, Privacy and Wishful Thinking

- Cypher Reuse: BAD
- One Time Pads: Can be Absolutely Secure
- The Key Exchange Problem
 - Using your "secure" channel (bad)
 - A Padlock Analogy
- Public Key Encryption
 - A Padlock Analogy
 - Rivest, Shamir, and Adleman (RSA) Encryption
 - Using Public Key and Private Key
 - Primes and Factoring
 - Breaking the Code: Factoring

11. Security, Privacy and Wishful Thinking

- Public Key Encryption
 - Digital Signatures
 - Using Private Key and Public Key
 - Need for Time Stamps
- Other Attacks (Buzz Words)
 - Many Leave No Trace
 - Password Hacking, IP Spoofing, Replay Attack
 - Man in the Middle, Denial of Service
- Whom Can You Trust?
 - Viruses, Trapdoors, Trojan Horses, Common Sense
- The Strong Encryption Trap

10. Virtual Environments for Computing

- The Raw Machine Provides a Hostile Environment
- Early Years Had Major Theme: CPU Time Precious
- Later Years: Cheaper and Cheaper Hardware
- What Does an Operating System Do?
 - Processor Management (Multiprogramming)
 - I/O Systems
 - Memory Management
 - Software Environments
- Memory Management
 - Memory Hierarchies, Paging, Protection

10. Virtual Environments for Computing

- I/O Systems
 - Files Systems, Communications/Networking
 - Graphical User Interfaces (GUI)
- Processor Management
 - True Parallel Processes vs. Simulated
 - Synchronization
 - Race condition
 - Deadlock
Changing Computer Technology

- Some Fundamental Limitations
 - Speed of light, heat dissipations, capacitance and inductance
- Other Important Concerns
 - Economics, Noise, Lifetime (mtf), Space
- Relay Computers (and problems)
- Vacuum Tube Computers (and problems)
- Transistor
- Integrated Circuits -- VLSI
- Economics of Silicon (Micro-electronics): CPUs in Everything
- Technology Summary (table)

13. Program Execution Time

- On the Limitations of Computer Science
 - 1. too slow. 2. Non-computable. 3. Don't know algorithm
- Time Complexity, N
- Study of a Sorting Algorithm: Selection Sort: N^2
- Polynomial = Tractable
 - Linear Time Algorithms: t = A * N
 - Cubic Time Algorithms: t = A * N^3
 - Quicksort: t = A * N * log(N)
 - Binary Search: t = A * log(N)
- Intractable Algorithms: Exponential t = A * B^N
 - Chess, Traveling Salesperson, Towers of Hanoi
- More hardware not always the answer!

14. Parallel Computation

- Limitation on Processor Speed
 - Speed of Light
 - Manufacturing Problems with Small Sizes
 - Heat Dissipation
- Ultimately Parallelism is Only Hope
- Forms of Parallelism
 - Word Size, Pipe Line (Laundry Example)
 - Multiprocessors, Networks of Processors, Internet
- Speedup
- What can we do with 100 processors?
 - Even with optimal speedup no big help for B^N programs

15. Noncomputability

- Certain Problems Not Amenable to Computer Solution
- Existence of Noncomputable Functions
 - Approach: Matching up Programs and Functions
 - Have: Uncountable Infinity of Functions (cannot be put into a row)
 - All Programs Can be Ordered
 - Try to Draw Lines Between Functions and Programs
 - Many more Functions than Programs!
- Programs that Read Programs
 - E.g., Java Compiler
- Solving the Halting Problem
15. Noncomputability

- Proofs by Contradiction (Indirect Proof)
- Proving non-computability
 - Assume Existence of Function \(\text{halt} \):
 - Use in way resulting in \(\text{Paradox}! \)
 - Therefore \(\text{halt} \) cannot exist!
- What Does It All Mean?

The Human Genome

- Genome: makeup: The Double Helix - DNA
 - 24 Chromosomes, 20-25 thousand Genes
 - 3.5 Gpb (3,500,000,000 base pairs)
 - Bases denoted by letters \(\text{A, C, G, T} \)
 - Strand of DNA (in each of our cells) approx 6 feet long!
- Alphabet demo: reconstruct alphabet fragments?
 - Assume each letter used only once, can match on \(\text{single} \) character
- Reconstruction from DNA fragments
 - More difficult: Only 4 characters: \(\text{A, C, G, T} \)
 - Repetition in the sequence: Need long overlaps
 - Demo: example with a sequence much longer than alphabet
 - Identify Overlaps to reconstruct; can get original sequence

The Real World (not toy alphabet problems)

- String lengths are huge: \((3 \times 10^9) \)
- Use fragments because \(\text{Automatic Sequencers Available} \)
 - Limited to lengths of 800 base pairs from each end of strand
- Now use of the \(\text{Shotgun Method of Sequencing} \)

Shotgun Sequencing

- Randomly cut genome into small pieces (~5 Kbp)
- Make many identical copies of these pieces
- Ends sequenced to produce \(\text{reads} \)

What's left is a Data Processing Problem

- Problems: Gaps, Repeats, Sequencing Errors
- Effectively “slide” ends over each other for match
- Compare each read with each other read: \(N^2 \) is \(\approx 9 \times 10^{12} \) compares

Interesting Competition

- BAC to BAC Sequencing
 - Public Human Genome Project (1988 -)
 - Whole Genome Shotgun Sequencing
 - Celera Genomics (private: Craig Ventnor, Eugene Myers)
 - Later start (1998 -), “finished” at same time
- Whole Genome Shotgun method appears to have won
- Job just beginning!
 - Need to find out what in Genome affects what in practice
 - Much labeled “junk” DNA because it doesn’t seem to affect anything.