Today’s topics

Computer Hardware
 Electric Circuits
 Designing an Adder

Upcoming
 Computer Communications
 (*Great Ideas* Chapter 10)

Reading
 (not in text)
Binary Addition (Z = X + Y)

- Like Decimal, but---
 - Have only two symbols: 0, 1

- At first, seems like *two* "inputs" will do
 x: 10010
 y: +01001
 z: 11011

- Looking at it
 - From right: 0+1 = 1; 1+0 = 1; 0+0 = 0; 0+1 = 1; 1+0 = 1
 - However, example *not realistic*
 - Must deal with possible *carries*
 - Need better example
Binary Addition \((Z = X + Y)\) (+carry)

- **Let’s try**

 \[
 \begin{align*}
 C & : \quad 001100100 \\
 X & : \quad 100110011 \\
 Y & : \quad +000110010 \\
 \hline
 Z & : \quad 101100101
 \end{align*}
 \]

- **Must add a top row for carries to get whole picture**

- **To add two number (by columns) takes three inputs**

 - X, Y and C (for carry)
 - **So, from right:**

 \[
 \begin{align*}
 0+0+1 &= 1(\text{carry 0}); \\ 0+1+1 &= 0(\text{carry1}); \\ 1+0+0 &= 1(\text{carry 0}); \\ 0+1+1 &= 0(\text{carry 1}); \\ 0+0+0 &= 0(\text{carry0}); \\ 0+1+1 &= 0(\text{carry 1}); \\ 1+1+1 &= 1(\text{carry 1}); \\ 1+0+0 &= 1(\text{carry0}); \\ 0+0+0 &= 0 (\text{carry 0}); \\ 0+1+0 &= 1 (\text{carry 0})
 \end{align*}
 \]
Truth Tables for Addition

- We need two 3-input truth tables
 - One for the resulting *Sum* bit
 - One for the resulting *Carry* bit

Sum:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[S = X'Y'C + X'YC' + XY'C' + XYC \]
Truth Tables for Addition

Carry:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
C = X'YC + XY'C + XYC' + XYC
\]

Diagram: [Circuit Diagram for Carry](#)
The 3 bit Adder

- Now have the building-blocks to put together an Adder of arbitrary size
- Design in several steps (illustrated by drawings on web page)
 1. Block Diagram
 2. Simple Adder
 3. Control Section
 4. Putting it all together: The 3 Bit Adder
- Will be on quizzes and/or Final Exam
- Learn how to go through circuits and mark them
- May encounter different circuits
 - E.g., a Subtractor
 - Same marking methods will apply