Today’s topics

Virtual Environment for Computing
Operating Systems

Upcoming
Program Execution Times
(Great Ideas, Chapter 13)

Reading
Great Ideas, Chapter 10
The Problem

- The Raw Machine Provides a Hostile Environment
 - Imagine program in machine language.

Machine Language Program for MIPS Machine

```
[00400000] 8fa40000 lw $4, 0($29) ; lw $a0, 0($sp)
[00400004] 27a50004 addiu $5, $29, 4 ; addiu $a1, $sp, 4 # argv
[00400008] 24a60004 addiu $6, $5, 4 ; addiu $a2, $a1, 4 # envp
[0040000c] 00041080 sll $2, $4, 2 ; sll $v0, $a0, 2
[00400010] 00c23021 addu $6, $6, $2 ; addu $a2, $a2, $v0
[00400014] 0c000000 jal 0x00400020 [main]; jal main
[00400018] 3402000a ori $2, $0, 10 ; li $v0 10
[0040001c] 00000000 syscall ; syscall
```

- Imagine doing disk I/O directly:
 - disk description
 - controlling Heads; timing
 - keeping track of where things are stored
 - dealing with Errors
The Problem

- **Other I/O**
 - Keyboard
 - Screen
 - Communications

- **Keeping track of memory**
 - Multiple tasks
 - Multiple users

- **Sharing the CPU**
 - Multiple tasks
 - Multiple users

- **The User Interface Problem**
 - For the computer professional only?
 - For the lay person
 - The Graphical User Interface
 - Computation to support this?
Historical Perspective

❖ Early Years
 □ Early 1960's machines: Almost Bare
 □ Mid 1960's Machines: Early Batch Operating Systems
 □ Multiprogramming Systems
 □ Time Sharing
 □ Lab Computers

❖ Had Major Theme: CPU Time Precious
 □ Ease of use: very low priority
 □ Graphical User Interface too costly (and not yet invented)
 □ This perspective faded with time and began to disappear with advent of the microprocessor: Cheap CPU time.
Historical Perspective

❖ Later Years
 ❑ Microprocessor in late 70’s
 ❑ PC's in early 80’s: Operating Systems for PC
 ❑ Apple: Macintosh (Xerox PARC)
 ❑ Workstations
 o UNIX -- AT&T: License Wars -- LINUX

❖ Major Change: Lower Costs
 ❑ Whole new audience
 ❑ User Interface
 o Essential for non pros
 o Affordable (cpu cycles to burn)
 ❑ Whole new competitive environment
 ❑ Volume!
Role of the Operating System

1. Processor Management (Multiprogramming)
 1. Several virtual machines

2. I/O Systems
 1. Windowing Systems / GUIs
 2. File Systems
 3. Communications/Networking

3. Memory Management
 1. Sharing Memory
 2. Simulating Additional Memory (Virtual Memory)

4. Software Environments
 - Administration/Accounting
 - Compilers
 - Tools
Memory Management

- **Virtual Memory**
 - Simulate memory using disks

- **Cache Memory**
 - Slow and fast memory
 - Library, bookcase, desktop analogies

- **Memory Hierarchies**
 - Registers x1
 - Cache x10 - x100
 - Main Memory x100 - x1000
 - Disks x1,000,000

- **Overhead**
 - Card Catalog analogies
 - Finding stuff on your desk or bookcase
Memory Management.2

- **Historically**
 - Swapping in Time Sharing Systems
 - Whole user image involved

- **Paging**
 - Page is conveniently sized block of memory
 - o (power of 2)
 - Physical swapping done page at a time

- **Protection**
 - Security (write protect)
 - Confidentiality (read protect)
 - (Early machines)
I/O Systems

- **Communications/Networking**
 - Extremely important in modern systems
 - (Dealt with that before)

- **Graphical User Interfaces (GUI)**
 - X-Windows
 - Macintosh Desktop
 - MS Windows
 - Xerox PARC; Legal Fun

- **Files Systems**
 - Flat
 - Hierarchical (Directories)
 - Distributed Files Systems
 - Andrew File System (AFS)
 - Network File System (NFS)
Processor Management

- **Virtual Machines**
 - True Parallel Processes vs. Simulated
 - Note that the “interleaving” is unpredictable
 - Interrupts
 - Contrast with “busy waiting”

- **Process Management**
 - Fairness
 - Responsiveness

- **Synchronization Problems**
 - Danger of *shared* resources
 - Data: *Race conditions*
 - Any Exclusive Resource: *Deadlock*
Synchronization Problems

- **Race Conditions**
 - Two Processes (A and B)
 - A manages (updates, etc.) “clock”
 - B uses “clock”
 - Example: clock at \(8:59\)
 - A: add one to minutes – \(8:00\) – note carry!
 - B: reads clock \(8:00\)!
 - A: add carry to hours \(9:00\)
 - Due to bad timing, A gets a time almost 1 hour off!

- **Deadlock**
 - User A needs printer P and modem M
 - User B needs modem M and printer P
 - Both are competing for same resources
 - 3 scenarios possible
Synchronization Problems

<table>
<thead>
<tr>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: get P</td>
<td>B: get M</td>
<td>A: get P</td>
</tr>
<tr>
<td>A: get M</td>
<td>B: get P</td>
<td>B: get M</td>
</tr>
<tr>
<td>B: get M (wait!)</td>
<td>A: get P (wait!)</td>
<td>A: get M (wait!)</td>
</tr>
<tr>
<td>A: process</td>
<td>B: process</td>
<td>B: get P (wait!)</td>
</tr>
<tr>
<td>A: release M, P</td>
<td>B: release P, M</td>
<td>...keep waiting...</td>
</tr>
<tr>
<td>B: get M</td>
<td>A: get P</td>
<td>B: get P</td>
</tr>
<tr>
<td>B: get P</td>
<td>A: get M</td>
<td>A: process</td>
</tr>
<tr>
<td>B: process</td>
<td>A: process</td>
<td></td>
</tr>
</tbody>
</table>