Polynomials

Polynomials have an important role in numerical computation for the following reasons.

- The evaluation of polynomials involves only arithmetic operations, which can be done on today’s digital computers.

- There are two important theorems about polynomials:
 - Taylor’s theorem, \(^1\)
 - Weierstrass approximation theorem. \(^2\)

 (Make some comparisons in their implications.)

We consider polynomials with real coefficients and real variable. Let \(P_n \) be the set of all polynomials of degree no larger than \(n \geq 0 \). Any polynomial in the set can be expressed as follows

\[
p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0,
\]

where \(a_j \in \mathcal{R} \) is the coefficient associated with the monic monomial \(x^j \), \(j = 0 : n \).

Review of the basic polynomial properties

- The set \(P_n \) is a vector space. In particular, it is closed with variable translation (shift of origin).
- The monic monomials
 \[
 1, x, x^2, \cdots, x^n,
 \]
 form a natural basis of \(P_n \). (Try to find another set of basis functions.) With a fixed set of basis functions, \(P_n \) can be mapped to the vector space \(\mathbb{R}^{n+1} \).

\(^1\)Taylor, Brook, 1685-1731, England. First mathematics paper in 1708 on the center of oscillation of a body.

\(^2\)Weierstrass, Karl, 1815-1897, Germany. A high school teacher until well known for his original work.
Any \(p \in P_n \) is bounded on finite intervals, unbounded on infinite intervals.

Any polynomial in \(P_n \) is continuous and differentiable for arbitrarily many times, i.e., \(P_n \subset C^\infty \).

Differentiation is a linear operator (many-to-one projection) from \(P_n \) to \(P_{n-1} \); indefinite integration with constant zero is a linear operator from \(P_n \) to \(P_{n+1} \); and a definite integration is a linear operator (functional) from \(P_n \) to \(R \).

Any \(p_n(x) \) has \(n \) roots \(x_i \) in the complex plane, and can be represented in the factored form

\[
p_n(x) = \prod_{i=1}^{n} (x - x_i).
\]

Additional Note.

- There are other types of polynomials:
 - complex variable \(p(z), z \in C \)
 - special case \(z = e^{iz} \)
 - multiple variates \(p(x, y) \)

- Important applications of polynomials include
 - Approximate function evaluation by Taylor polynomials
 - Interpolation or data fitting with cubic splines
 - Multi-scale approximation with B-splines