CPS 108, Fall 2005

e Object oriented programming and design, we'll use
Java and C++ (at least)

> Language independent concepts including design patterns,
e.g., Model-View-Controller, iterator, factory, strategy, ...

» Design independent concepts, e.g., coupling, cohesion, testing,
refactoring, profiling, ...

e Non OO programming and design, we'll use C++
(and its C-subset)
» From Java/ArrayList to C++/vector to C/int *
» From classes to functions, from references to pointers

Software Design 11

Goals for students in Compsci 108

o Adept at solving problems requiring programming
> Design, test, implement, release, revise, maintain

e Reasonably facile with basic Java idioms/libraries
> How to read the API, knowing what to ignore
> Basic language features, basic libraries

e Basic knowledge of C++ (and C) programming
> Beyond the old Compsci 100
> Java-style use of STL, towards advanced?

Software Design 12

More goals for 108 students

e Know patterns catalog, vocabulary and use
» HFDP rather than GOF (and more TLAs/FLAs)

e Experience working in teams

> How to accommodate team needs, balance
against individual needs (and goals)

e Comfort in working alone, how to get and use help
> Peers, UTAs, TA, prof, Internet, ...

Software Design 13

Administrivia
o check website and bulletin board regularly

> http://www.cs.duke.edu/courses/cps108/current/
> See links to bulletin board and other stuff

e Grading (see web pages)
> group projects: small, medium, large
> mastery programs (solo or semi-solo endeavors)
> readings and summaries
> tests

Software Design 14




Administrivia (continued)

o Evaluating team projects, role of TA, UTA,
consultants

> face-to-face evaluation, early feedback

e Compiling, tools, environments, Linux, Windows,
Mac

> gt++3.3,34,4.0?,

> Java 5 (requires 10.4 on Mac)
> Eclipse in all environments
> Command-line tools???

Software Design 15

Classes: Review/Overview

o A class encapsulates state and behavior
> Behavior first when designing a class
> Information hiding: who knows state/behavior?

e State is private; some behavior is public
> Private/protected helper functions

> A class is called an object factory, creates lots of
instances

Software Design 16

How do classes and objects work?

e Classes communicate and collaborate
> Parameters: send and receive
» Containment: has a reference to
» Inheritance: is-a

e Understanding inheritance and interfaces
> What is polymorphism?
> When is polymorphism not appropriate?
> What is an interface in Java, what about C++?

Software Design 17

Design Criteria

Good design comes from experience, experience comes
from bad design
Fred Brooks

e Design with goals:
> ease of use
> portability
> ease of re-use
> efficiency
> first to market

Software Design 18




How to code

e Coding/Implementation goals:
> Make it run
> Make it right
> Make it fast
> Make it small

e spiral design (or RAD or !waterfall or ...)
> what’s the design methodology?

design specification

implementation

Software Design

XP and Refactoring

(See books by Kent Beck (XP) and Martin Fowler (refactoring))
e eXtreme Programming (XP) is an agile design process
> Communication: unit tests, pair programming, estimation
» Simplicity: what is the simplest approach that works?
> Feedback: system and clients; programs and stories
» Courage: throw code away, dare to be great/different

e Refactoring

» Change internal structure without changing observable
behavior

» Don’t worry (too much) about upfront design
> Simplicity over flexibility (see XP)

Software Design 110

Modules, design, coding, refactor, XP

e Make it run, make it right, make it fast, make it small
o Do the simplest thing that can possibly work (XP)
> Design so that refactoring is possible

> Don't lose sight of where you're going, keep change in
mind, but not as the driving force [it will evolve]

e Refactor: functionality doesn’t change, code does
> Should mean that new tests aren’t written, just re-run
> Depends on modularity of code, testing in pieces

e What’s a module in Java?

> Could be a class, a file, a directory, a package, a jar file
> We should, at least, use classes and packages

Software Design

Design Heuristics: class/program/function

(see text by Arthur Riel)
e Coupling
> classes/modules are independent of each other
> goal: minimal, loose coupling
» do classes collaborate and/or communicate?
o Cohesion
> classes/modules capture one abstraction/model
» keep things as simple as possible, but no simpler
> goal: strong cohesion (avoid kitchen sink)
e The open/closed principle

> classes/programs: open to extensibility, closed to
modification

Software Design 112




Eric Raymond

e Open source evangelist
> The Cathedral and the Bazaar

http://www.catb.org/~esr/writings/cathedral-bazaar,

> How to construct software

“Good programmers know what to
write. Great ones know what to
rewrite (and reuse).”

e How to convince someone that
guns are a good idea? Put this sign
up:

e THIS HOME IS A GUN-FREE
ZONE

Software Design

David Parnas (ACM fellow)

Software Design

I would advise students to pay
more attention to the fundamental
ideas rather than the latest
technology. The technology will be
out-of-date before they graduate.
Fundamental ideas never get out of
date. However, what worries me
about what I just said is that some
people would think of Turing
machines and Goedel's theorem as
fundamentals. I think those things
are fundamental but they are also
nearly irrelevant. I think there are
fundamental design principles, for
example structured programming
principles, the good ideas in
"Object Oriented" programming,
etc




