
Software Design 1.1

CPS 108, Fall 2005
Object oriented programming and design, we'll use
Java and C++ (at least)

Language independent concepts including design patterns,
e.g., Model-View-Controller, iterator, factory, strategy, …
Design independent concepts, e.g., coupling, cohesion, testing,
refactoring, profiling, …

Non OO programming and design, we'll use C++
(and its C-subset)

From Java/ArrayList to C++/vector to C/int *
From classes to functions, from references to pointers

Software Design 1.2

Goals for students in Compsci 108
Adept at solving problems requiring programming

Design, test, implement, release, revise, maintain

Reasonably facile with basic Java idioms/libraries
How to read the API, knowing what to ignore
Basic language features, basic libraries

Basic knowledge of C++ (and C) programming
Beyond the old Compsci 100
Java-style use of STL, towards advanced?

Software Design 1.3

More goals for 108 students
Know patterns catalog, vocabulary and use

HFDP rather than GOF (and more TLAs/FLAs)

Experience working in teams
How to accommodate team needs, balance
against individual needs (and goals)

Comfort in working alone, how to get and use help
Peers, UTAs, TA, prof, Internet, …

Software Design 1.4

Administrivia
check website and bulletin board regularly

http://www.cs.duke.edu/courses/cps108/current/

See links to bulletin board and other stuff

Grading (see web pages)
group projects: small, medium, large
mastery programs (solo or semi-solo endeavors)
readings and summaries
tests

Software Design 1.5

Administrivia (continued)
Evaluating team projects, role of TA, UTA,
consultants

face-to-face evaluation, early feedback

Compiling, tools, environments, Linux, Windows,
Mac

g++ 3.3, 3.4, 4.0?,
Java 5 (requires 10.4 on Mac)
Eclipse in all environments
Command-line tools???

Software Design 1.6

Classes: Review/Overview
A class encapsulates state and behavior

Behavior first when designing a class
Information hiding: who knows state/behavior?

State is private; some behavior is public
Private/protected helper functions
A class is called an object factory, creates lots of
instances

Software Design 1.7

How do classes and objects work?
Classes communicate and collaborate

Parameters: send and receive
Containment: has a reference to
Inheritance: is-a

Understanding inheritance and interfaces
What is polymorphism?
When is polymorphism not appropriate?
What is an interface in Java, what about C++?

Software Design 1.8

Design Criteria
Good design comes from experience, experience comes
from bad design

Fred Brooks

Design with goals:
ease of use
portability
ease of re-use
efficiency
first to market
?????

Software Design 1.9

How to code
Coding/Implementation goals:

Make it run
Make it right
Make it fast
Make it small

spiral design (or RAD or !waterfall or ...)
what’s the design methodology?

specificationdesign

implementation

Software Design 1.10

XP and Refactoring
(See books by Kent Beck (XP) and Martin Fowler (refactoring))

eXtreme Programming (XP) is an agile design process
Communication: unit tests, pair programming, estimation
Simplicity: what is the simplest approach that works?
Feedback: system and clients; programs and stories
Courage: throw code away, dare to be great/different

Refactoring
Change internal structure without changing observable
behavior
Don’t worry (too much) about upfront design
Simplicity over flexibility (see XP)

Software Design 1.11

Modules, design, coding, refactor, XP
Make it run, make it right, make it fast, make it small
Do the simplest thing that can possibly work (XP)

Design so that refactoring is possible
Don’t lose sight of where you’re going, keep change in
mind, but not as the driving force [it will evolve]

Refactor: functionality doesn’t change, code does
Should mean that new tests aren’t written, just re-run
Depends on modularity of code, testing in pieces

What’s a module in Java?
Could be a class, a file, a directory, a package, a jar file
We should, at least, use classes and packages

Software Design 1.12

Design Heuristics: class/program/function

(see text by Arthur Riel)
Coupling

classes/modules are independent of each other
goal: minimal, loose coupling
do classes collaborate and/or communicate?

Cohesion
classes/modules capture one abstraction/model
keep things as simple as possible, but no simpler
goal: strong cohesion (avoid kitchen sink)

The open/closed principle
classes/programs: open to extensibility, closed to
modification

Software Design 1.13

Eric Raymond
Open source evangelist

The Cathedral and the Bazaar
http://www.catb.org/~esr/writings/cathedral-bazaar/

How to construct software
“Good programmers know what to

write. Great ones know what to
rewrite (and reuse).”
How to convince someone that
guns are a good idea? Put this sign
up:

THIS HOME IS A GUN-FREE
ZONE

Software Design 1.14

David Parnas (ACM fellow)
I would advise students to pay
more attention to the fundamental
ideas rather than the latest
technology. The technology will be
out-of-date before they graduate.
Fundamental ideas never get out of
date. However, what worries me
about what I just said is that some
people would think of Turing
machines and Goedel's theorem as
fundamentals. I think those things
are fundamental but they are also
nearly irrelevant. I think there are
fundamental design principles, for
example structured programming
principles, the good ideas in
"Object Oriented" programming,
etc.

