
Software Design 10.1

Working as part of a group
see McCarthy, Dynamics of Software Development

establish a shared vision
what was/is Freecell? what can we add?
harmonious sense of purpose

develop a creative environment
the more ideas the better, ideas are infectious
don’t flip the BOZO bit

scout the future
what’s coming, what’s the next project
what new technologies will affect this project

Software Design 10.2

Scheduling/Slipping
McCarthy page 50, Group Psyche, TEAM=SOFTWARE

anything you need to know about a team can be
discovered by examining the software and vice versa
leadership is interpersonal choreography
greatness results from ministrations to group psyche
which is an “abstract average of individual psyches”
mediocrity results from neglect of group psyche

Slipping a schedule has no moral dimension (pp 124-145)
no failure, no blame, inevitable consequence of
complexity
don’t hide from problems
build from the slip, don’t destroy
hit the next milestone, even if redefined (“vegetate”)

Software Design 10.3

Aside: ethics of software
What is intellectual property, why is it important?

what about FSF, GPL, copy-left, open source, …
what about money
what about monopolies

What does it mean to act ethically and responsibly?
What is the Unix philosophy? What about protection?
What about copying? What about stealing? What
about borrowing?
No harm, no foul? Is this a legitimate philosophy?

The future belongs to software developers/entrepreneurs
what can we do to ensure the world’s a good place to
be?

Software Design 10.4

Software Design
See Alan Cooper, The Essentials of User Interface Design

who designs the software?

Implementation is view of software developer, user’s view
is mental model, software designer has to bridge this gap

Example: copy/move files in a Windows/Mac
environment, what’s the difference in dragging a
file/folder between two folders on the same device and
dragging between devices, e.g., c: to a:? Is this a
problem? To whom?

Implications in Freecell? What’s a Pile? A Deck?

Implementation model user’s modelworse better

Software Design 10.5

Comfort: technology and mathematics
“Show me all the first year students who live in Pegram and
in Brown”

what does “and” mean here? Does the average user
understand Boolean? Does the average programmer
understand Boolean? Recursion? Threads? Queues?

How you solve a problem in your program isn’t (necessarily)
how the user solves the problem, keep these distinctions clear

“Saying that someone is ‘computer literate’ is really a
euphemism meaning he has been indoctrinated and trained in
the irrational and counter-intuitive way that file systems work,
and once you have been properly subverted into thinking like a
computer nerd, the obvious ridiculousness of the way the file
system presents itself to the user doesn’t seem so foolish.”

Software Design 10.6

Applets and Applications
Application run by user, double-clickable/command-line

No restrictions on access, reads files, URLS, …
GUI applications typically include a JFrame
• Has title, menus, closeable, resizeable

Applet is downloaded via the web
Runs in browser, not trusted (but see policy later)
Can't read files on local machine (but see policy)
Can't be resized within browser
Uses jar file to get all classes at once
• Alternative? Establish several connections to server

Software Design 10.7

Developing Applets and Applications
Create a JPanel with the guts of the GUI/logic

What will be in the content pane of both
deployments
Makes GUI very simple, see code examples
Use JPanel in both Applet and Application

Test with application first, easier to read
files/resources

Migrate to Applet, test first with appletviewer
Migrate to web, may need to clear cache/reload

Software Design 10.8

Packages, JAR files, deployment
http://java.sun.com/docs/books/tutorial/jar/basics/inde

x.html

Java packages correspond semantically to modules
(related classes) and syntactically to a directory
structure

Class names correspond to file names
Package names correspond to directories
Related classes belong together, easier to
develop, easier to deploy
Leverage default/package access, use properties
of protected which is subclass and package access

Software Design 10.9

Packages, javac, java, javadoc
In moderately big programs packages are essential

Can’t easily live in a directory with 50 .java files
Can’t easily co-exist in such a directory
Harder to use tools like Make and Ant

Each of javac, java, javadoc is slightly different
with packages, all must co-exist with CLASSPATH

File system vs. compiler vs. runtime
Source of confusion and problems
IDEs can manage Make/CLASSPATH issues

Software Design 10.10

CLASSPATH and related concepts
The default CLASSPATH is . current directory

Works fine with default/unnamed packages
Will not work with named packages

Set CLASSPATH to directory in which packages live also
include current dir

setenv CLASSPATH "~ola:."
setenv CLASSPATH "`pwd`:."

On windows machines change registry variable, separator
is semi-colon rather than colon

All problems are CLASSPATH problems

Software Design 10.11

More package details
To compile

Can cd into directory and type javac *.java
Can also type javac ooga/*.java from one level up
If CLASSPATH isn't set, the second won't work

To run
java ooga.TicTac will work, you must specify the
"real" name of the class being used.
Reading files requires full-paths or run from directory in
which file lives

To document
http://java.sun.com/j2se/javadoc/faq.html
Don't need to use –sourcepath, but can
javadoc –d doc ooga ooga.timer ooga.game …

Software Design 10.12

javadoc for packages
See the javadoc faq http://java.sun.com/j2se/javadoc/faq.html

For each package create a package.html file
• Not in /** */ javadoc format, strictly html
• First sentence after <body> is main description; a sentence ends with

a period.
• The package.html file should provide complete instructions on how

to use the package. All programmer documentation should be
accessible or part of this file, e.g., in the file or linked to the file

Use the {@link foo.bar bar} tag appropriately.
• See the FAQ, or the source for the elan package online

You may want to keep .java and .class files separate, see
sourcepath and classpath as commandline args to java

Software Design 10.13

From JITs to Deoptimization
JITs compile bytecodes when first executed

If we can cache translated code we can avoid re-translating
the same bytecode sequence
Spend time compiling things that aren’t frequently
executed (optimistic optimization?)
Errors indicate “compiled code” rather than line number

Sun’s HotSpot VM uses a different strategy for performance
Adaptive compilation: save time over JIT, compile
“hotspots” rather than everything, uses less memory, starts
program faster, http://java.sun.com/products/hotspot/
No method inlining, but uses dynamic deoptimization
• Program loads new subclass, compiled code invalid, so …?

What does the class loader do?

Software Design 10.14

Loading .class files
The bytecode verifier “proves theorems” about the bytecodes
being loaded into the JVM

These bytecodes may come from a non-Java source, e.g.,
compile Ada into bytecodes (why?)

This verification is a static analysis of properties such as:
.class file format (including magic number 0xCAFEBABE)
Methods/instances used properly, parameters correct
Stack doesn’t underflow/overflow

Verification is done by the JVM, not changeable
Contrast ClassLoader, which is changeable, can modify
classes before they’re loaded into the JVM

http://securingjava.com
http://java.sun.com/sfaq/verifier.html

Software Design 10.15

The ClassLoader
The “boot strap” loader is built-in to the JVM

Sometimes called the “default” loader, but it’s not
extensible or customizable the way other loaders are
Loads classes from the platform on which the JVM runs
(what are loader and JVM written in?)

Applet class loader, RMI class loader, user loaders
Load .class files from URLs, from other areas of platform
on which JVM runs
A class knows how it was loaded and new instances will
use the same loader

Why implement a custom loader?
Work at Duke with JOIE

Software Design 10.16

Running an Applet
An applet has an init() method

similar to constructor, called only once, when the applet is
first loaded

An applet has a start() method
called each time the applet becomes “active”, run the first
time, or revisited e.g., via the back button in a browser

An applet has a stop() method
called when applet is invisible, e.g., user scrolls or goes to
another web page

other methods in an applet
destroy, getAppletInfo, getParameterInfo

Applet subclasses Panel, so it is an Container/Component

