multi-platform, multi-os client/server

e Suppose we send data between clients and servers...

e Architectural issues impact client/server code
» Little-endian/Big-endian issues
¢ Oxabcd is a 32-bit value, which is MSB? How is this stored?
> How big is an int? 32-bits, 64 bits, ...

o Towards raising the level of discussion
> Worrying about integer byte order is not fun
> Let’s worry about sending objects back-and-forth, not bytes
> How do we send and receive objects?

g . 111
Software Design

Client/Server Communication

e The Java stream hierarchy is a rich source of options
> Object streams, Data streams, Buffered Readers, ...
» Often these convert between bytes and characters
* What's the story with Unicode? (e.g. compared to ASCII)
* FileStream, BufferedReader, ...,
e We can read and write objects over sockets

» Advantages compared to lower-level protocols?
» Disadvantages?

e Issues in understanding and implementing
> Where do objects “live”, are classes different?
> Subclass/Superclass issues
> What about connection issues (where, how, knowledge)

Software Design 1.2

Clients and Servers: server side

e Server socket exists on some machine, listens to a “port”
> A port isn’t a physical concept, it’s an OS concept
> The OS manages ports, some services listen at
predetermined ports, e.g., mail at port 25
* User programs use ports above 1024

e Server gets a connection and handles the request, but
what about other connection requests?

» Can’t be too busy processing request, or will miss
other attempts at connections

> Spin off handler as a separate program/process
e Server blocks on accepting connections, new jdk1.4 API
for java.nio.channels might improve things

> Why is blocking not ideal?

§ . 1.3
Software Design

Networked Games

e What will go over the network?
> Board?
> Move?
» Other?

e Where is the controller?
> Server?
> Client?
» Combination?

o How does the server work for many games?
> Rules important?

. 114
Software Design




Simple Client/Server code

e The example shows how a client communicates
commands to server

» Deciding how to process a command is simple, but
not robust/OO in the current model

e How are client and server similar? Different?

> Both know about all commands?
> How do they know this?

Software Design

Architectural considerations

e What can we do to generalize things, move away from
chain of if/else code

» Create commands corresponding to protocol
> Execute command obtained by map

e What's in the map? Some commands require state, e.g.,
more data from server or client

» Can have a map of string to object, but how to get
information into the object?

> Can map string to object factory, have a per-command
factory

» Factory knows how to create each command

Software Design

Networked games: ooga to nooga

e Different games make writing general server difficult
> Turn based games...
» Multiplayer asynchronous games like Boggle...
» Noah's Ark, Samegame, ...

e Nooga story at Duke
» Each summer for the past N summers ...
* Do we have a general, usable architecture?
> What should we do next?

e What are key issues in developing networked games
> Don’t worry about robustness or generality

Software Design

From controller to threads

e Threads are lightweight processes (what's a process?)

> Threads are part of a single program, share state of
the program (memory, resources, etc.)

> Several threads can run “at the same time”
* What does this mean?

> Every Swing/AWT program has at least two threads
¢ AWT/event thread
* Main program thread

o Coordinating threads is complicated
» Deadlock, starvation/fairness
> Monitors for lock/single thread access

Software Design




Concurrent Programming

e Typically must have method for ensuring atomic access to
objects
> If different threads can read and write the same object
then there is potential for problems
¢ ThreadTrouble.java example
* Consider getting x and y coordinates of a moving object
> If an object is read-only, there are no issues in concurrent
programming
¢ String is immutable in Java, other classes can have instance
variables be defined as final, cannot change (like const)

e In Java, the keyword synchronized is the locking mechanism
used to ensure atomicity

» Uses per-object monitor (C.A.R. Hoare), processes wait to
get the monitor, it’s re-entrant

Software Design

Using synchronized methods

e Methods can be synchronized, an object can be the argument of
a synchronized block, a class cannot be synchronized

> Every object has a lock, entering a synchronized method of
the object, or using the object in a synchronized block,
blocks other threads from using synchronized methods of
the object (since the object is locked)

> If a synchronized method calls another synchronized
method on the same object, the lock is maintained (even
recursively)

> Another thread can execute any unsynchronized method of
an object O, even if O’s lock is held

> A thread blocks if it tries to execute a synchronized method
of an object O if O’s lock is held by a different thread

Software Design 1110

Thread classes in Java

e Classes can extend java. lang.Thread or implement
Java. lang.Runnable, (note: Thread implements
Runnable)

> A thread’s run method is executed when the thread is
started

» Typically the run method is “infinite”
* Executes until some final/done state is reached

¢ The run method must call sleep(..) or yield(); if not the
thread is selfish and once running may never stop

> A runnable object is run by constructing a Thread
object from the runnable and starting the thread

e Threads have priorities and groups
> Higher priority threads execute first
> Thread groups can be a useful organizational tool

. 111
Software Design




