
Software Design
11.1

multi-platform, multi-os client/server
Suppose we send data between clients and servers…

Architectural issues impact client/server code
Little-endian/Big-endian issues
• 0xabcd is a 32-bit value, which is MSB? How is this stored?

How big is an int? 32-bits, 64 bits, …

Towards raising the level of discussion
Worrying about integer byte order is not fun 
Let’s worry about sending objects back-and-forth, not bytes
How do we send and receive objects?



Software Design
11.2

Client/Server Communication
The Java stream hierarchy is a rich source of options

Object streams, Data streams, Buffered Readers, …
Often these convert between bytes and characters
• What’s the story with Unicode? (e.g. compared to ASCII)
• FileStream, BufferedReader, …, 

We can read and write objects over sockets
Advantages compared to lower-level protocols?
Disadvantages?

Issues in understanding and implementing
Where do objects “live”, are classes different?
Subclass/Superclass issues
What about connection issues (where, how, knowledge)



Software Design
11.3

Clients and Servers: server side
Server socket exists on some machine, listens to a “port”

A port isn’t a physical concept, it’s an OS concept
The OS manages ports, some services listen at 
predetermined ports, e.g., mail at port 25
• User programs use ports above 1024

Server gets a connection and handles the request, but 
what about other connection requests?

Can’t be too busy processing request, or will miss 
other attempts at connections
Spin off handler as a separate program/process 

Server blocks on accepting connections, new jdk1.4 API 
for java.nio.channels might improve things

Why is blocking not ideal?



Software Design
11.4

Networked Games
What will go over the network?

Board?
Move?
Other?

Where is the controller?
Server?
Client?
Combination?

How does the server work for many games?
Rules important?



Software Design
11.5

Simple Client/Server code
The example shows how a client communicates 
commands to server

Deciding how to process a command is simple, but 
not robust/OO in the current model

How are client and server similar? Different?
Both know about all commands?
How do they know this?



Software Design
11.6

Architectural considerations
What can we do to generalize things, move away from 
chain of if/else code

Create commands corresponding to protocol
Execute command obtained by map

What’s in the map? Some commands require state, e.g., 
more data from server or client

Can have a map of string to object, but how to get 
information into the object?
Can map string to object factory, have a per-command 
factory
Factory knows how to create each command



Software Design
11.7

Networked games: ooga to nooga
Different games make writing general server difficult

Turn based games…
Multiplayer asynchronous games like Boggle…
Noah’s Ark, Samegame, …

Nooga story at Duke
Each summer for the past N summers …
• Do we have a general, usable architecture?

What should we do next?

What are key issues in developing networked games
Don’t worry about robustness or generality



Software Design
11.8

From controller to threads
Threads are lightweight processes (what’s a process?)

Threads are part of a single program,  share state of 
the program (memory, resources, etc.)
Several threads can run “at the same time”
• What does this mean?

Every Swing/AWT program has at least two threads
• AWT/event thread
• Main program thread

Coordinating threads is complicated
Deadlock, starvation/fairness
Monitors for lock/single thread access



Software Design
11.9

Concurrent Programming
Typically must have method for ensuring atomic access to 
objects

If different threads can read and write the same object 
then there is potential for problems
• ThreadTrouble.java example
• Consider getting x and y coordinates of a moving object

If an object is read-only, there are no issues in concurrent 
programming
• String is immutable in Java, other classes can have instance 

variables be defined as final, cannot change (like const)

In Java, the keyword synchronized is the locking mechanism 
used to ensure atomicity

Uses per-object monitor (C.A.R. Hoare), processes wait to 
get the monitor, it’s re-entrant



Software Design
11.10

Using synchronized methods
Methods can be synchronized, an object can be the argument of 
a synchronized block, a class cannot be synchronized

Every object has a lock, entering a synchronized method of 
the object, or using the object in a synchronized block, 
blocks other threads from using synchronized methods of 
the object (since the object is locked)
If a synchronized method calls another synchronized 
method on the same object, the lock is maintained (even 
recursively)
Another thread can execute any unsynchronized method of 
an object O, even if O’s lock is held
A thread blocks if it tries to execute a synchronized method 
of an object O if O’s lock is held by a different thread



Software Design
11.11

Thread classes in Java
Classes can extend java.lang.Thread or implement 
java.lang.Runnable, (note: Thread implements 
Runnable)

A thread’s run method is executed when the thread is 
started 
Typically the run method is “infinite”
• Executes until some final/done state is reached
• The run method must call sleep(..) or yield(); if not the 

thread is selfish and once running may never stop
A runnable object is run by constructing a Thread 
object from the runnable and starting the thread

Threads have priorities and groups
Higher priority threads execute first
Thread groups can be a useful organizational tool


