
Software Design 2.1

Programming Heuristics
Identify the aspects of your application that vary 
and separate them from what stays the same

Take what varies and encapsulate it
Program to an interface, not an implementation

Specify behavior by name, not by working code

Favor Composition over Inheritance
Use "has-a" rather than "is-a"

Classes and code should be open for extension, but 
closed to modification

The Open-Closed Principle



Software Design 2.2

Implications for nanoGoogle?
What might change in going from release 0.9 to 1.0 
to 2.0 in nanoGoogle

Should we worry about future changes?
Should we make things work now?
Can we do both?

Strategy pattern
Algorithm varies independently from clients that 
use it, 
What are the algorithms in nanoGoogle?



Software Design 2.3

Design patterns
“... describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million 
times over, without ever doing it the same way twice”

Christopher Alexander, quoted in GOF
Name

good name is a handle for the pattern, builds vocabulary
Problem

when applicable, context, criteria to be met, design goals
Solution

design, collaborations, responsibilities, and relationships
Forces and Consequences

trade-offs, problems, results from applying pattern: help in 
evaluating applicability



Software Design 2.4

Towards being a hacker
See the hacker-faq (compsci 108 web page)

Hackers solve problems and build things, and they 
believe in freedom and voluntary mutual help. To be 
accepted as a hacker, you have to behave as though you 
have this kind of attitude yourself. And to behave as 
though you have the attitude, you have to really believe 
the attitude. 

The world is full of fascinating problems
no one should have to solve the same problem twice
boredom and drudgery are evil
freedom is good
attitude is no substitute for competence

You may not work to get reputation, but the reputation is a real
payment with consequences if you do the job well.



Software Design 2.5

Aside: ethics of software
What is intellectual property, why is it 
important?

what about FSF, GPL, copy-left, open source,
what about money and monopolies

What does it mean to act ethically and 
responsibly?

What about copying? stealing? borrowing?
No harm, no foul? Is this a legitimate 
philosophy?
Can software developers make a difference 
in the world?



Software Design 2.6

Richard Stallman
Free Software movement

Free as in speech
Not Free as in beer

Wrote emacs, gcc,gdb,…
GNU's not Unix

Grace Murray Hopper award, 
Macarthur award, EFF Pioneer 
award, 


	Programming Heuristics
	Implications for nanoGoogle?
	Design patterns
	Towards being a hacker
	Aside: ethics of software
	Richard Stallman

