Programming Heuristics

e Identify the aspects of your application that vary
and separate them from what stays the same

> Take what varies and encapsulate it
e Program to an interface, not an implementation
> Specify behavior by name, not by working code

e Favor Composition over Inheritance
» Use "has-a" rather than "is-a"

e Classes and code should be open for extension, but
closed to modification

> The Open-Closed Principle

Software Design 21



Implications for nanoGoogle?

e What might change in going from release 0.9 to 1.0
to 2.0 in nanoGoogle

> Should we worry about future changes?
> Should we make things work now?
> Can we do both?

e Strategy pattern

> Algorithm varies independently from clients that
use it,

> What are the algorithms in nanoGoogle?

Software Design 2.2



Design patterns

“... describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice”

Christopher Alexander, quoted in GOF

e Name

> good name is a handle for the pattern, builds vocabulary
e Problem

> when applicable, context, criteria to be met, design goals
e Solution

> design, collaborations, responsibilities, and relationships
e Forces and Consequences

> trade-offs, problems, results from applying pattern: help in
evaluating applicability

Software Design 2.3



Towards being a hacker

e See the hacker-faq (compsci 108 web page)

> Hackers solve problems and build things, and they
believe in freedom and voluntary mutual help. To be
accepted as a hacker, you have to behave as though you
have this kind of attitude yourself. And to behave as
though you have the attitude, you have to really believe
the attitude.

e The world is full of fascinating problems
> no one should have to solve the same problem twice
> boredom and drudgery are evil
> freedom is good
> attitude is no substitute for competence

You may not work to get reputation, but the reputation is a real
payment with consequences if you do the job well.

Software Design 24



Aside: ethics of software

e What is intellectual property, why is it
important?

> what about FSF, GPL, copy-left, open source,
> what about money and monopolies

e What does it mean to act ethically and
responsibly?
> What about copying? stealing? borrowing?
> No harm, no foul? Is this a legitimate
philosophy?
> Can software developers make a difference
in the world?

Software Design 2.5



Richard Stallman

e Free Software movement
> Free as in speech
> Not Free as in beer

Ml e Wrote emacs, gcc,gdb, ...
> GNU's not Unix

“fl ¢ Grace Murray Hopper award,
Macarthur award, EFF Pioneer
award,

Software Design 2.6



	Programming Heuristics
	Implications for nanoGoogle?
	Design patterns
	Towards being a hacker
	Aside: ethics of software
	Richard Stallman

