
Software Design 3.1

java.io.*

What is a package? How are packages organized in 
Java? How do you find how to use them?

Reading API, reading books, writing code
In Java there are lots of ways of reading, mostly 
using InputStream and Reader abstract classes

How do you use an abstract class?

These classes use the Decorator pattern
Reading files? FileReader to BufferedReader
How to read System.in line-by-line?
See also java.util.Scanner in Java 5

Software Design 3.2

java.util.*

Contains the collections framework, legacy 
collection classes, event model, date and time 
facilities, internationalization, and miscellaneous 
utility classes (a string tokenizer, a random-number 
generator, and a bit array)

From programmer's perspective the Collection
hierarchy provides data structures

Lists, Sets, Maps of elements (and others)
Your code must know how to play well with 
collections

Software Design 3.3

Playing well with Collections
Every object has an equals(..) method, contract?

What does this return? How do you implement 
it, what about apples and oranges?
Default behavior? When to over-ride?

If you override/over-ride equals, see hashCode()
What does this return? Implementation issues?
Good, bad, …?

Software Design 3.4

Loose coupling and collections
How do you store data in nanoGoogle?

What do you store?
How do you access it?
What are performance issues and trade-offs?

Difference in storing into a Map versus storing into 
a NanoCollector?

What heuristics are in play?
What do you do first?


