Patterns from nanoGoogle |

e Decorator
> Attach responsibilities dynamically
» Concrete class 'is-a' and 'has-a' decorator
> Avoid rewriting existing code, write new code

e BufferedReader and java. io classes
> From string, from web, from ...
e Filter classes
> Boolean: accept/reject word
> Altering: remove punctuation, lowercase, ...

Decorator Details

e Name: also-knowns-as Wrapper
> Wrap existing object with more responsibilities
> HFDP: tall, decaf, skim, latte

e Forces:
> Add responsibilities to objects without affecting
other objects (and remove the responsibilities)
> Extension by subclass impractical: class

explosion or no access to parent class for
subclassing

Patterns from nanoGoogle Il

e Strategy

> Change algorithm, policy without altering
existing code, but by writing new code

> Program to interface, not implementation

> Algorithm varies independently from client
e What to do when processing words

> Count them, store them, dump them to disk

e How to print results after processing words
> XML, to file, standard output, ...

Software Design

Strategy Details

e Name: also known as Policy
> Make algorithms/policies interchangeable
> HFDP: how to quack, how to fly

e Forces:

> Re-use policies between contexts or change them
at runtime

» Context has-a policy, uses it, can change policy
> Don't hardwire policy behavior into client

Software Design 14




