
Software Design 4.1

Patterns from nanoGoogle I
Decorator

Attach responsibilities dynamically
Concrete class 'is-a' and 'has-a' decorator
Avoid rewriting existing code, write new code

BufferedReader and java.io classes
From string, from web, from …

Filter classes
Boolean: accept/reject word
Altering: remove punctuation, lowercase, …



Software Design 4.2

Decorator Details
Name: also-knowns-as Wrapper

Wrap existing object with more responsibilities
HFDP: tall, decaf, skim, latte

Forces:
Add responsibilities to objects without affecting 
other objects (and remove the responsibilities)
Extension by subclass impractical: class 
explosion or no access to parent class for 
subclassing



Software Design 4.3

Patterns from nanoGoogle II
Strategy

Change algorithm, policy without altering 
existing code, but by writing new code
Program to interface, not implementation
Algorithm varies independently from client

What to do when processing words
Count them, store them, dump them to disk

How to print results after processing words
XML, to file, standard output, …



Software Design 4.4

Strategy Details
Name: also known as Policy

Make algorithms/policies interchangeable
HFDP: how to quack, how to fly

Forces:
Re-use policies between contexts or change them 
at runtime
Context has-a policy, uses it, can change policy
Don't hardwire policy behavior into client


