
Software Design 5.1

From Using to Programming GUIs
Extend model of "keep it simple" in code to GUI

Bells and whistles ok, but easy to use and hide

We're talking about software design
Not HCI or user-interface design or human 
factors…
However, compare winamp to iTunes

How do we design GUIs
Programming, drag-and-drop, …
How do we program/connect GUIs?

Software Design 5.2

javax.swing, events, and GUIs
GUI programming requires processing events

There’s no visible loop in the program
Wire up/connect widgets
• Menu, button, text area, spinner, combobox, …
• some generate events, some process events

Pressing this button causes the following to happen
We want to do practice “safe wiring”, meaning?
Open-closed principle

Software Design 5.3

Building GUIs
We need to put widgets together, what makes a 
good user-interface? What makes a bad user-
interface?

How do we lay widgets out, by hand? Using a 
GUI-builder? Using a layout manager?
How do we cope with widget complexity?

Use the Sun Java Tutorial
See other online sources

Software Design 5.4

JComponent/Container/Component
The java.awt package was the original widget 
package, it persists as parent package/classes of 
javax.swing widgets

Most widgets are JComponents (subclasses), to 
be used they must be placed in a Container
The former is a swing widget, the latter awt, 
why?

Container is a component, but contains a collection 
of components (similar to what design pattern?)

Composite Design Pattern



Software Design 5.5

Composite, Container (continued)
A Container is also a Component, but not all 
Containers are JComponents (what?)

JFrame is often the “big container” that holds all 
the GUI widgets, we’ll use this and JApplet (awt
counterparts are Frame and Applet)

A JPanel is a JComponent that is also a Container
Holds JComponents, for example and is holdable
as well

Software Design 5.6

What do Containers do?
A Container is a Component, so it’s possible for a 
Container to “hold itself”? Where have we seen 
this?

“You want to represent part-whole hierarchies of 
objects. You want clients to be able to ignore the 
difference between compositions of objects and 
individual objects. Clients will treat all objects in 
the composite structure uniformly”.
Composite pattern solves the problem. Think tree, 
linked list: leaf, composite, component

Software Design 5.7

Parents and Children
What about parent references?

Does child need to know who contains it?

What about child references?
Does parent need to know who it contains?

In Java/Swing, a parent is responsible for painting 
its children

For “paint” think draw, arrange, manage, …

Software Design 5.8

Widget layout
A Layout Manager “decides” how widgets are arranged in a 
Container

In a JFrame, we use the ContentPane for holding 
widgets/components, not the JFrame itself

Strategy pattern: “related classes only differ in behavior, 
configure a class with different behaviors… you need variants 
of an algorithm reflecting different constraints…context 
forwards requests to strategy, clients create strategy for the 
context”

Context == JFrame/container, Strategy == Layout

Layouts: Border, Flow, Grid, GridBag, Spring, …
I’ll use Border, Flow, Grid in my code



Software Design 5.9

BorderLayout (see code)
Default for the JFrame 
contentpane

Provides four areas, center is 
“main area” for resizing

Recursively nest for building 
complex (yet simple) GUIs

BorderLayout.CENTER for 
adding components

Some code uses “center”, 
bad idea (bugs?)

CENTER

NORTH

SOUTH

W
E
S
T

E
A
S
T

Software Design 5.10

Action and other events
Widgets generate events, these events are processed 
by event listeners

Different types of events for different scenarios: 
press button, release button, drag mouse, press 
mouse button, release mouse button, edit text in 
field, check radio button, …
Some widgets “fire” events, some widgets 
“listen” for events

To process events, add a listener to the widget, 
when the widget changes, or fires, its listeners are 
automatically notified.

Observer/Observable (related to MVC) pattern

Software Design 5.11

Adding Listeners
In lots of code you’ll see that the Container widget is the 
listener, so pressing a button or selecting a menu is processed 
by the Container/Frame’s actionPerformed method

All ActionListeners have an actionPerformed method, is 
this interface/implements or inheritance/extends?
Here’s some “typical” code, why is this bad?

void actionPerformed(ActionEvent e)
{

if (e.getSource() == thisButton) …
else if (e.getSource() == thatMenu)…

}

Software Design 5.12

A GUI object can be its own client
Occasionally a GUI will be a listener of events it generates

Simple, but not extendable
Inner classes can be the listeners, arguably the GUI is still 
listening to itself, but …
• Encapsulating the listeners in separate classes is better

Client (nonGUI) objects cannot access GUI components
Properly encapsulated JTextField, for example, responds to 
aGui.displayText(), textfield not accessible to clients
If the GUI is its own client, it shouldn’t access textfield
• Tension: simplicity vs. generality

Don’t wire widgets together directly or via controller that 
manipulates widgets directly

Eventual trouble when GUI changes



Software Design 5.13

Using inner/anonymous classes
For each action/event that must be processed, create 
an object to do the processing

Command pattern: parameterize object by an 
action to perform, queue up requests to be 
executed at different times, support undo
There is a javax.swing Event Queue for 
processing events, this is the hidden while loop 
in event processing GUI programs

Software Design 5.14

Anonymous classes
The inner class can be named, or it can be created 
“anonymously”

For reuse in other contexts, sometimes naming 
helpful
Anonymous classes created close to use, easy to 
read (arguable to some)

Software Design 5.15

Listeners
Events propagate in a Java GUI as part of the event 
thread

Don’t manipulate GUI components directly, use 
the event thread
Listeners/widgets register themselves as 
interested in particular events
•Events go only to registered listeners, can be 

forwarded/consumed

Software Design 5.16

More on Listeners
ActionListener, KeyListener, ItemListener,
MouseListener, MouseMotionListener, …, see 
java.awt.event.*

Isolate listeners as separate classes, mediators 
between GUI, Controller, Application
Anonymous classes can help here too



Software Design 5.17

Listeners and Adapters
MouseListener has five methods, KeyListener has 
three

What if we’re only interested in one, e.g., key 
pressed or mouse pressed?
As interface, we must implement all methods as 
no-ops
As adapter we need only implement what we 
want

Software Design 5.18

Adapters and Interfaces
Single inheritance can be an annoyance in this 
situation

Can only extend one class, be one adapter, …

What about click/key modifiers, e.g., 
shift/control/left/both

Platform independent, what about Mac?


