
Software Design 6.1

Tell, Don't Ask
Tell objects what you want them to do, do not ask 
questions about state, make a decision, then tell 
them what to do (Pragmatic Programmers, LLC)

Think declaratively, not procedurally
Don't ask for a map, then walk through the map
Instead of iteration, apply to all
• Breaks when we don't want to apply to all

Rules are made to be broken
Reduce coupling, better code



Software Design 6.2

Law of Demeter
Don't talk to objects, don't call methods. The more 
you talk, the more you rely on something that will 
break later

Call your own methods
Call methods of parameter objects
Call methods if you create the object

Do NOT call methods on objects returned by calls
List all = obj.getList();
all.addSpecial(key,getValue());
obj.addToList(key,getValue());   // ok here



Software Design 6.3

Toward a GUI-programming model
We want to adhere to language-independent ideals

Concepts move from GUIs in Java to …
javax.swing and java.awt offer thousands of 
choices
•Too many to have to understand/find comfort 

in, but …

But, write reasonable, robust , GUI applications
Actually write code, not simply adhere to lofty 
ideals
Show me the code!



Software Design 6.4

One GUI Conceptual Framework
Create a JPanel for the GUI contentPane

Provide a BorderLayout, organize hierarchically
Ok to use GridLayout, FlowLayout, … nested

Create Buttons, Menu-items, and other widgets
Bind each event-generator to a listener
Do not dispatch within a listener on event source
• No "if event-generator is button A do this"

Use anonymous inner classes, or named inner classes
Process events, created and attached close-to-source
Make a button, make a button-listener



Software Design 6.5

Click on a button, display the click
ActionListener textDisplayer = new ActionListener(){

public void actionPerformed(ActionEvent e)
{

showText(e.getActionCommand());
}

};

What does an ActionListener do?
Listens for an event, e.g., from Button, Menu, …
Processes the command/event

How do anonymous classes work?
Note: ActionListener is an interface, but object created!
See what Eclipse refactoring will do with this



Software Design 6.6

Making a Move: View and Controller

ActionListener moveMaker = new ActionListener(){
public void actionPerformed(ActionEvent e)
{
int val = Integer.parseInt(e.getActionCommand());
myControl.makeMove(new GameMove(val));

}
};

We know this will be bound to a specific type of button
Not generic, completely application specific
Turns swing/GUI event into application event: Move

Controllers should be programmed abstractly
Don't base code on a GUI toolkit, separate concerns



Software Design 6.7

Alan Kay, winner of 2004 Turing Award
Alto, Smalltalk, Squeak, 
Object-Oriented Programming

"Don't worry about what 
anybody else is going to do… 
The best way to predict the 
future is to invent it. Really 
smart people with reasonable 
funding can do just about 
anything that doesn't violate 
too many of Newton's Laws!" 



Software Design 6.8

Alan Kay on Education and OO
"By the time I got to school, I had already read a couple 
hundred books. I knew in the first grade that they were lying 
to me because I had already been exposed to other points of 
view. School is basically about one point of view -- the one the 
teacher has or the textbooks have. They don't like the idea of 
having different points of view, so it was a battle. Of course I
would pipe up with my five-year-old voice."

Java and C++ make you think that the new ideas are like the 
old ones. Java is the most distressing thing to hit computing 
since MS-DOS. 

I invented the term "Object-Oriented", and I can tell you I did 
not have C++ in mind. 


