Model View Controller: MVC

e Model stores and updates state of application

> Example: calculator, what's the state of a GUI-
calculator?

> When model changes it notifies its views

* Example: pressing a button on calculator, what happens?

e The controller interprets commands, forwards them
appropriately to model (usually not to view)

> Code for calculator that reacts to button presses

> Controller isn't always a separate class, often
part of GUI-based view in M/VC

Software Design 71



Model, View, Controller

e MVC is afundamental design pattern: solution to a
problem at a general level, not specific code per se

> This is a pattern, so there's isn't "one right way"

e Model encapsulates state, e.g., documents viewed,
game being played

> For browser: keep list of favorites, documents, ...
> For game: interpret moves, change state, ...
> When model changes, it notifies the view

Software Design 7.2



How do we use a view?

e The view knows about model
> Construct view with model, pass to view, ...

e The model knows about the view

> Why can't this happen at model construction
time?

e Hollywood principle for OO/MVC
> Don't call us, we'll call you
> The view calls the model when things happen
> The model reacts and updates the view, repeat

Software Design 7.3



What about loading files?

e Where are files loaded, model or view?
> Why is one better? Is one better?

e What about time-consuming operations
> What if we load a big file, a URL that's blocked

e How do we cope with long-running tasks?
> Use threads, very hard to do this right.

Software Design 7.4



