A Rose by any other name...C or Java?

e Why do we use Java in our courses (royal we?)
> Object oriented
> Large collection of libraries
> Safe for advanced programming and beginners
> Harder to shoot ourselves in the foot

e Why don't we use C++ (or C)?

> Standard libraries weak or non-existant
(comparatively)

> Easy to make mistakes when beginning
> No GUIs, complicated compilation model

Software Design 81

Why do we learn other languages?

o Perl, Python, PHP, mySQL, C, C++, Java, Scheme, ML, ...
> Can we do something different in one language?
* Depends on what different means.
¢ In theory: no; in practice: yes
> What languages do you know? All of them.
» In what languages are you fluent? None of them

o In later courses why do we use C or C++?
» Closer to the machine, we want to understand the machine
at many levels, from the abstract to the ridiculous
* Or at all levels of hardware and software
> Some problems are better suited to one langauge
* What about writing an operating system? Linux?

Software Design 82

C++ on three slides

e Classes are similar to Java, compilation model is different
» Classes have public and private sections/areas

» Typically declaration in .h file and implementation in .cpp
¢ Separate interface from actual implementation
* Good in theory, hard to get right in practice

> One .cpp file compiles to one .o file
¢ To create an executable, we link .o files with libraries
* Hopefully someone else takes care of the details (Makefile)

o We #include rather than import, this is a preprocessing step

> Literally sucks in an entire header file, can take a while for
standard libraries like iostream, string, etc.

» No abbreviation similar to java.util.*;

Software Design 83

C++ on a second slide

o We don't have to call new to create objects, they can be created
"on the stack"

» Using new creates memory "on the heap"

> In C++ we need to do our own garbage collection, or avoid
and run out of memory (is this an issue?)

e vector similar to ArrayList, pointers are similar to arrays
» Unfortunately, C/C++ equate array with memory allocation
> To access via a pointer, we don't use . we use ->

e Streams are used for IO, iterators are used to access begin/end
of collection

> ifstream, cout correspond to Readers and System.out

Software Design 84




How do we read a file? (SearchDemo)

TreeSet<String> unique =

int total = O;

while (s.hasNext()){
String str = s.next();
total++;

unique.add(str.toLowerCase());

new TreeSet<String>();

myWordsAsList = new ArrayList(set);

string word;

set<string> unique;

int total = 0O;

while (input >> word){
transform(word.begin(), word.end(),

word.begin(),makelower); // ml NOT standard
unique.insert(word);
total++;

myWords = vector<string>(unique.begin(), unique.end());

Software Design

Shafi Goldwasser

o RCS professor of computer

science at MIT
» Co-inventor of zero-
knowledge proof protocols

How do you convince someone
that you know something
without revealing “something”

o ACM Grace Murray Hopper
award and Godel prize in
Theoretical Computer Science
(twice)

Work on what you like, what
feels right, I now of no other way
to end up doing creative work

Software Design

8.6

Toward an Understanding of C++
e Traditional first program, doesn’t convey power of computing
but it illustrates basic components of a simple program

#include <iostream>
using namespace std;

// traditional first program
int main()

cout << "Hello world" << endl;
return O;

e This program must be edited/typed, compiled, linked and
executed.

e Other languages don’t use compile/link phase, examples?

Software Design

What’'s a namespace?
o In “standard” C++, objects and types are classified as to what
namespace they’re in. Hierarchy is good.
#include <iostream>
// traditional first program
int mainQ)
std::cout << "Hello world" << std::endl;

return 0;

e It’s much simpler to “use” a namespace, in small programs
there won't be any conflicts (and small is fairly big)

Software Design 88




Compiling and linking, differences

hello.cpp
#include <string> hello.o

;"t main() 4,{ 01010101010101... ‘

string s = “hi”;

3

/7 string.cpp

hgllo

Link [:::]

It's all relative and it depends
I make the best

I make the
best bread in

I make the
best bread in
the world

Software Design

hello.ex
// stuff we can’t i
// understand String.o
\’ 111000110101010.. ‘
Software Design 89
Quadratic Equation Example
void Roots(double a, doyble b, double c,
double& ro le& ropt2);
// post: rooth roots of
// quadratic ax”2 +. +C
// valuds und fingd iIf no roots exist
1
int mainQ) :
double
cout < 'ter doefficients "';
cin > ;
Roots(a,b,c,rl,r2);
cout << "roots are " << rl << " " << r2 <<
endl;
return O;

}

Software Design

Who supplies memory, where’s copy?

void Roots(double a, double b, double c,
double& rootl, double& root2);

// post: rootl and root2 set to roots of

// quadratic ax™2 + bx + c

// values undefined if no roots exist

o For value parameter, the argument value is copied into
memory that “belongs” to parameter

o For reference parameter, the argument is the memory, the
parameter is an alias for argument memory

double x, y, w, z;

Roots(1.0, 5.0, 6.0, X, y);
Roots(1.0, w, z, 2.0, X); // no good, why?

Software Design 812




Parameter Passing: const-reference

o When parameters pass information into a function, but the
object passed doesn’t change, it’s ok to pass a copy

> Pass by value means pass a copy
> Memory belongs to parameter, argument is copied

e When parameter is altered, information goes out from the
function via a parameter, a reference parameter is used

> No copy is made when passing by reference
> Memory belongs to argument, parameter is alias

e Sometimes we want to avoid the overhead of making the
copy, but we don’t want to allow the argument to be changed
(by a malicious function, for example)

> const-reference parameters avoid copies, but cannot be
changed in the function

Software Design 813

Count # occurrences of “e”

o Look at every character in the string, avoid copying the string

int letterCount(const string& s, const string& letter)
// post: return number of occurrences of letter in s

int k, count = 0, len = s.length(Q);
for(k=0; k < len; k++) {

if (s.substr(k,1) == letter) {
count++;

return count;
o Calls below are legal (but won't be if just reference parameters)

int ec = letterCount(elephant™, "e™);
string s = "hello"; cout << letterCount(s, "a");

Software Design 814

General rules for Parameters

o Don’t worry too much about efficiency at this stage of
learning to program
> You don’t really know where efficiency bottlenecks are
> You have time to develop expertise
o However, start good habits early in C++ programming

> Built-in types: int, double, bool, char, pass by value unless
returning/changing in a function

> All other types, pass by const-reference unless
returning/changing in a function

> When returning/changing, use reference parameters

o Const-reference parameters allow constants to be passed,
“hello” cannot be passed with reference, but ok const-
reference

Software Design 815

Rock Stars for Computer Science

Well there can't be
nothing worse
than a perfect number

I was going to
call it “Songs in
the Key of C++”

Don't be fooled
by the code that
I've got ...

Date week = new Date();

The week ends
week begins

Software Design 816




STL concepts

o Container: stores objects, supports iteration over the objects
> Containers may be accessible in different orders
» Containers may support adding/removing elements
> e.g., vector, map, set, deque, list, multiset, multimap

e Iterator: interface between container and algorithm
> Point to objects and move through a range of objects
> Many kinds: input, forward, random access, bidirectional
> Syntax is pointer like, analagous to (low-level) arrays

e Algorithms
> find, count, copy, sort, shuffle, reverse, ...

Software Design 817

Iterator specifics

e An iterator is dereferenceable, like a pointer
> *1itis the object an iterator points to

e An iterator accesses half-open ranges, [first..last), it can have a
value of last, but then not dereferenceable

> Analagous to built-in arrays as we'll see, one past end is ok

e An iterator can be incremented to move through its range
> Past-the-end iterators not incrementable

vector<int> v; for(int k=0; k < 23; k++) v.push_back(k);

vector<int>::iterator it = v.begin(Q);
while (it !'= v.,end()) { cout << *v << endl; v++;}

Software Design 818

STL overview

e STL implements generic programming in C++
> Container classes, e.g., vector, stack, deque, set, map
> Algorithms, e.g., search, sort, find, unique, match, ...
> Iterators: pointers to beginning and one past the end
> Function objects: less, greater, comparators

e Algorithms and containers decoupled, connected by iterators
> Why is decoupling good?
> Extensible: create new algorithms, new containers, new
iterators, etc.

> Syntax of iterators reflects array/pointer origins, an array
can be used as an iterator

Software Design 819

STL examples: wordlines.cpp

e How does an iterator work?
> Start at beginning, iterate until end: use [first..last) interval
> Pointer syntax to access element and make progress

vector<int> v; // push elements
vector<int>::iterator first = v.begin();
vector<int>::iterator last = v.end(Q);
while (First < last) {

cout << *first << endl;

++First;

¥

» Will the while loop work with an array/pointer?

e In practice, iterators aren’t always explicitly defined, but
passed as arguments to other STL functions

Software Design 820




Review: what’s a map, a set, a ...

o Maps keys to values
> Insert key/value pair
» Extract value given a key, iterate over pairs
> STL uses red-black tree, guaranteed O(log n) ...
¢ STL unofficially has a hash_map, see SGI website
» Performance and other trade-offs?

e A set can be implemented by a map

> Stores no duplicates, in STL guaranteed O(log n), why?
> STL also has multimap

Software Design 821

arrays and strings: what’s a char *?

o Why not rely solely on string and vector classes?

> how are string and vector implemented?

> lower level access can be more efficient (but be leery of
claims that C-style arrays/strings required for efficiency)

> real understanding comes when more levels of abstraction

are understood

e string and vector classes insulate programmers from
inadvertent attempts to access memory that’s not accessible

> what is the value of a pointer?

> what is a segmentation violation?

Software Design

Contiguous chunks of memory
int * a = new int[100];
o In C++ allocate using array [T 1757 T
form of new R
int * a = new int[100]; X

double * b = new double[300];

a is a poi
e new [| returns a pointertoa @ is an
block of memory a[0] is An int (same as *a)
> how big? where? a[1] ig an int
a+l i6 a pointer

e size of chunk can be set at

runtime, not the cgse with . _ _
int a[100]; 8 (at+l) is an int (same as a[1])

cin >> howBig; *(a+99) is an int

int a[howBig]; *(a+100) is trouble

a+100 is valid for comparison
of pointer values

a+32 is a pointer

o delete [] a; // storage returned

Software Design 823

C-style contiguous chunks of memory

e In C, malloc is used to allocate
memory
int * a = (int *)
malloc(100 * sizeof(int));
double * d = (double *)

malloc(200 * sizeof(double));

e malloc must be cast, is NOT
type-safe (returns void *)

> void * is “‘generic’ type, can
be cast to any pointer type

o free(d); // return storage

e We WILL NOT USE
malloc/free

Software Design

int * a = (int *)
mal loc(100*sizeof(int));

N T I I B B

n int (same as *a)

an int

a pointer

a+32 is a pointer

*(a+l) is an int (same as a[l1])
*(a+99) is an int

*(a+100) is trouble

a+100 is valid for comparison




Address calculations, what is sizeof(...)?

int * a = new int[100];

I 1 O N

99

a[33] is the same as *(a+33)
if a is 0x00a0, then a+l is
0x00a4, a+2 is 0x00a8
(think 160, 164, 168)

double * d = new double[200];

) 1 33 199
*(d+33) is the same as d[33]
if d is 0x00b0, then d+1 is
0x00b8, d+2 is 0x00c0

(think 176, 184, 192)

Software Design

e x is a pointer, what is x+33?
> a pointer, but where?

> what does calculation
depend on?

o result of adding an int to a
pointer depends on size of
object pointed to

o result of subtracting two
pointers is an int:

(@+3)-d==

Who is Alan Perlis?

o It is easier to write an incorred
program than to understand a8
correct one

e Simplicity does not precede
complexity, but follows it

e If you have a procedure with
ten parameters you probably
missed some

o If alistener nods his head
when you're explaining your
program, wake him up

e Programming is an unnatural
act

o Won first Turing award

http://www.cs.yale.edu/homes/perlis-alan/quotes.html

Software Design 8.26

More pointer arithmetic

o address one past the end of
an array is ok for pointer
comparison only

e what about *(begin+44)?
e what does begin++ mean?

e how are pointers compared
using < and using == ?

e what is value of end - begin?

Software Design

char * a = new char[44];
char * begin = a;
char * end = a + 44;

N N O O B

0 1 15 16 42 43

while (begin < end)
{

*begin = “z”;
begin++; // *begin++ = “z”

by

What is a C-style string?

e array of char terminated by sentinel “\0" char
> sentinel char facilitates string functions
> “\0” is nul char, unfortunate terminology
> how big an array is needed for string “hello”?

e astring is a pointer to the first character just as an
array is a pointer to the first element

» char * s = new char[6];
> what is the value of s? of s[0]?

o char * string functions in <string.h>

Software Design 828




C style strings/string functions

e strlen is the # of characters

in a string

> same as # elements in

char array?
int strlen(char * s)
// pre: “\0” terminated
// post: returns # chars

int count=0;

while (*s++) count++;

return count;

}
o Are these less cryptic?

while (s[count]) count++;
// OR, is this right?
char * t = s;

while (*t++);

return t-s;

Software Design

.

e what's
code?

wrong” with this

int countQs(char * s)
// pre: “\0” terminated
// post: returns # Qq’s

int count=0;

for(k=0;k <

strlen(s);k++)
it (s[kl=="g”)

count++;

return count;

e how many chars examined
for 10 character string?

e solution?

e strcpy copies strings
> who supplies storage?
> what’s wrong with s = t?
char s[5];
char t[6];
char * h = “hello”;

strecpy(s,h); 7/ trouble!
strcpy(t,h); // ok

char * strcpy(char* t,char* s)
//pre: t, target, has space
//post: copies s to t,returns t
int k=0;
while (t[k] = s[k]) k++;
return t;
e strncpy copies n chars (safer?)

Software Design

<string.h> aka <cstring> functions

e what about relational
operators <, ==, etc.?

e can’t overload operators for
pointers, no overloaded
operators in C

e strcmp (also strncmp)
> return 0 if equal
> return neg if lhs < rhs
> return pos if lhs > rhs
if (strcmp(s,t)==0) // equal

iT (stremp(s,t) < 0)// less
if (stremp(s,t) > 0)//7 2?2?22

Arrays and pointers

e These definitions are related, but not the same

int a[100];
int * ap = new int[10];

e both a and ap represent “arrays’, but ap is an lvalue

e arrays converted to pointers for function calls:

char s[] = “hello”;

// prototype: int strlen(char * sp);

cout << strlen(s) << endl;

e multidimensional arrays and arrays of arrays

int a[20][5];

int * b[10]; for(k=0; k < 10; k++) b[k] = new int[30];

Software Design




