
Software Design 8.1

A Rose by any other name…C or Java?
Why do we use Java in our courses (royal we?)

Object oriented
Large collection of libraries
Safe for advanced programming and beginners
Harder to shoot ourselves in the foot

Why don't we use C++ (or C)?
Standard libraries weak or non-existant
(comparatively)
Easy to make mistakes when beginning
No GUIs, complicated compilation model

Software Design 8.2

Why do we learn other languages?
Perl, Python, PHP, mySQL, C, C++, Java, Scheme, ML, …

Can we do something different in one language?
• Depends on what different means.
• In theory: no; in practice: yes

What languages do you know? All of them.
In what languages are you fluent? None of them

In later courses why do we use C or C++?
Closer to the machine, we want to understand the machine
at many levels, from the abstract to the ridiculous
• Or at all levels of hardware and software

Some problems are better suited to one langauge
• What about writing an operating system? Linux?

Software Design 8.3

C++ on three slides
Classes are similar to Java, compilation model is different

Classes have public and private sections/areas
Typically declaration in .h file and implementation in .cpp
• Separate interface from actual implementation
• Good in theory, hard to get right in practice

One .cpp file compiles to one .o file
• To create an executable, we link .o files with libraries
• Hopefully someone else takes care of the details (Makefile)

We #include rather than import, this is a preprocessing step
Literally sucks in an entire header file, can take a while for
standard libraries like iostream, string, etc.
No abbreviation similar to java.util.*;

Software Design 8.4

C++ on a second slide
We don't have to call new to create objects, they can be created
"on the stack"

Using new creates memory "on the heap"
In C++ we need to do our own garbage collection, or avoid
and run out of memory (is this an issue?)

vector similar to ArrayList, pointers are similar to arrays
Unfortunately, C/C++ equate array with memory allocation
To access via a pointer, we don't use . we use ->

Streams are used for IO, iterators are used to access begin/end
of collection

ifstream, cout correspond to Readers and System.out

Software Design 8.5

How do we read a file? (SearchDemo)
TreeSet<String> unique = new TreeSet<String>();
int total = 0;
while (s.hasNext()){

String str = s.next();
total++;
unique.add(str.toLowerCase());

}
myWordsAsList = new ArrayList(set);

string word;
set<string> unique;
int total = 0;
while (input >> word){

transform(word.begin(), word.end(),
word.begin(),makelower); // ml NOT standard

unique.insert(word);
total++;

}
myWords = vector<string>(unique.begin(), unique.end());

Software Design 8.6

Shafi Goldwasser
RCS professor of computer
science at MIT

Co-inventor of zero-
knowledge proof protocols

How do you convince someone
that you know something
without revealing “something”
ACM Grace Murray Hopper
award and Godel prize in
Theoretical Computer Science
(twice)

Work on what you like, what
feels right, I now of no other way
to end up doing creative work

Software Design 8.7

Toward an Understanding of C++
Traditional first program, doesn’t convey power of computing
but it illustrates basic components of a simple program

#include <iostream>
using namespace std;

// traditional first program

int main()
{

cout << "Hello world" << endl;
return 0;

}
This program must be edited/typed, compiled, linked and
executed.
Other languages don’t use compile/link phase, examples?

Software Design 8.8

What’s a namespace?
In “standard” C++, objects and types are classified as to what
namespace they’re in. Hierarchy is good.

#include <iostream>

// traditional first program

int main()
{

std::cout << "Hello world" << std::endl;
return 0;

}

It’s much simpler to “use” a namespace, in small programs
there won’t be any conflicts (and small is fairly big)

Software Design 8.9

Compiling and linking, differences

// string.cpp
// stuff we can’t
// understand

#include <string>
int main()
{
string s = “hi”;

}

hello.cpp

01010101010101…
hello.o

111000110101010…
string.o

hello
Link

hello.exe

Software Design 8.10

It’s all relative and it depends

I make the
best bread in
the city

I make the
best bread in
the world

I make the best
bread in the
universe

I make the best
bread on the block

Software Design 8.11

Quadratic Equation Example
void Roots(double a, double b, double c,

double& root1, double& root2);
// post: root1 and root2 set to roots of
// quadratic ax^2 + bx + c
// values undefined if no roots exist

int main()
{

double a,b,c,r1,r2;
cout << "enter coefficients ";
cin >> a >> b >> c;
Roots(a,b,c,r1,r2);

cout << "roots are " << r1 << " " << r2 <<
endl;
return 0;

}

Software Design 8.12

Who supplies memory, where’s copy?
void Roots(double a, double b, double c,

double& root1, double& root2);
// post: root1 and root2 set to roots of
// quadratic ax^2 + bx + c
// values undefined if no roots exist

For value parameter, the argument value is copied into
memory that “belongs” to parameter
For reference parameter, the argument is the memory, the
parameter is an alias for argument memory

double x, y, w, z;
Roots(1.0, 5.0, 6.0, x, y);
Roots(1.0, w, z, 2.0, x); // no good, why?

Software Design 8.13

Parameter Passing: const-reference
When parameters pass information into a function, but the
object passed doesn’t change, it’s ok to pass a copy

Pass by value means pass a copy
Memory belongs to parameter, argument is copied

When parameter is altered, information goes out from the
function via a parameter, a reference parameter is used

No copy is made when passing by reference
Memory belongs to argument, parameter is alias

Sometimes we want to avoid the overhead of making the
copy, but we don’t want to allow the argument to be changed
(by a malicious function, for example)

const-reference parameters avoid copies, but cannot be
changed in the function

Software Design 8.14

Count # occurrences of “e”
Look at every character in the string, avoid copying the string

int letterCount(const string& s, const string& letter)
// post: return number of occurrences of letter in s
{

int k, count = 0, len = s.length();
for(k=0; k < len; k++) {

if (s.substr(k,1) == letter) {
count++;

}
}
return count;

}
Calls below are legal (but won’t be if just reference parameters)

int ec = letterCount("elephant", "e");
string s = "hello"; cout << letterCount(s, "a");

Software Design 8.15

General rules for Parameters
Don’t worry too much about efficiency at this stage of
learning to program

You don’t really know where efficiency bottlenecks are
You have time to develop expertise

However, start good habits early in C++ programming
Built-in types: int, double, bool, char, pass by value unless
returning/changing in a function
All other types, pass by const-reference unless
returning/changing in a function
When returning/changing, use reference parameters

Const-reference parameters allow constants to be passed,
“hello” cannot be passed with reference, but ok const-
reference

Software Design 8.16

Rock Stars for Computer Science
I was going to
call it “Songs in
the Key of C++”

Well there can't be
nothing worse
than a perfect number

Don't be fooled
by the code that
I've got …

Date week = new Date();

The week ends the
week begins

Software Design 8.17

STL concepts
Container: stores objects, supports iteration over the objects

Containers may be accessible in different orders
Containers may support adding/removing elements
e.g., vector, map, set, deque, list, multiset, multimap

Iterator: interface between container and algorithm
Point to objects and move through a range of objects
Many kinds: input, forward, random access, bidirectional
Syntax is pointer like, analagous to (low-level) arrays

Algorithms
find, count, copy, sort, shuffle, reverse, …

Software Design 8.18

Iterator specifics
An iterator is dereferenceable, like a pointer

*it is the object an iterator points to

An iterator accesses half-open ranges, [first..last), it can have a
value of last, but then not dereferenceable

Analagous to built-in arrays as we’ll see, one past end is ok

An iterator can be incremented to move through its range
Past-the-end iterators not incrementable

vector<int> v; for(int k=0; k < 23; k++) v.push_back(k);
vector<int>::iterator it = v.begin();
while (it != v.end()) { cout << *v << endl; v++;}

Software Design 8.19

STL overview
STL implements generic programming in C++

Container classes, e.g., vector, stack, deque, set, map
Algorithms, e.g., search, sort, find, unique, match, …
Iterators: pointers to beginning and one past the end
Function objects: less, greater, comparators

Algorithms and containers decoupled, connected by iterators
Why is decoupling good?
Extensible: create new algorithms, new containers, new
iterators, etc.
Syntax of iterators reflects array/pointer origins, an array
can be used as an iterator

Software Design 8.20

STL examples: wordlines.cpp
How does an iterator work?

Start at beginning, iterate until end: use [first..last) interval
Pointer syntax to access element and make progress

vector<int> v; // push elements
vector<int>::iterator first = v.begin();
vector<int>::iterator last = v.end();
while (first < last) {

cout << *first << endl;
++first;

}

Will the while loop work with an array/pointer?

In practice, iterators aren’t always explicitly defined, but
passed as arguments to other STL functions

Software Design 8.21

Review: what’s a map, a set, a …
Maps keys to values

Insert key/value pair
Extract value given a key, iterate over pairs
STL uses red-black tree, guaranteed O(log n) …
• STL unofficially has a hash_map, see SGI website

Performance and other trade-offs?

A set can be implemented by a map
Stores no duplicates, in STL guaranteed O(log n), why?
STL also has multimap

Software Design 8.22

arrays and strings: what’s a char *?
Why not rely solely on string and vector classes?

how are string and vector implemented?
lower level access can be more efficient (but be leery of
claims that C-style arrays/strings required for efficiency)
real understanding comes when more levels of abstraction
are understood

string and vector classes insulate programmers from
inadvertent attempts to access memory that’s not accessible

what is the value of a pointer?
what is a segmentation violation?

Software Design 8.23

Contiguous chunks of memory
In C++ allocate using array
form of new

int * a = new int[100];
double * b = new double[300];

new [] returns a pointer to a
block of memory

how big? where?
size of chunk can be set at
runtime, not the case with
int a[100];
cin >> howBig;
int a[howBig];

delete [] a; // storage returned

int * a = new int[100];

0 1 9932 33 98

a is a pointer
*a is an int
a[0] is an int (same as *a)
a[1] is an int
a+1 is a pointer
a+32 is a pointer
*(a+1) is an int (same as a[1])
*(a+99) is an int
*(a+100) is trouble
a+100 is valid for comparison

of pointer values

Software Design 8.24

C-style contiguous chunks of memory
In C, malloc is used to allocate
memory

int * a = (int *)
malloc(100 * sizeof(int));

double * d = (double *)
malloc(200 * sizeof(double));

malloc must be cast, is NOT
type-safe (returns void *)

void * is ‘generic’ type, can
be cast to any pointer type

free(d); // return storage
We WILL NOT USE
malloc/free

int * a = (int *)
malloc(100*sizeof(int));

0 1 9932 33 98

a is a pointer
*a is an int
a[0] is an int (same as *a)
a[1] is an int
a+1 is a pointer
a+32 is a pointer
*(a+1) is an int (same as a[1])
*(a+99) is an int
*(a+100) is trouble
a+100 is valid for comparison

Software Design 8.25

Address calculations, what is sizeof(…)?
x is a pointer, what is x+33?

a pointer, but where?
what does calculation
depend on?

result of adding an int to a
pointer depends on size of
object pointed to

result of subtracting two
pointers is an int:

(d + 3) - d == _______

int * a = new int[100];

0 1 9932 33 98

a[33] is the same as *(a+33)
if a is 0x00a0, then a+1 is
0x00a4, a+2 is 0x00a8
(think 160, 164, 168)

0 1 33 199

double * d = new double[200];

*(d+33) is the same as d[33]
if d is 0x00b0, then d+1 is
0x00b8, d+2 is 0x00c0
(think 176, 184, 192)

Software Design 8.26

Who is Alan Perlis?
It is easier to write an incorrect
program than to understand a
correct one
Simplicity does not precede
complexity, but follows it
If you have a procedure with
ten parameters you probably
missed some
If a listener nods his head
when you're explaining your
program, wake him up
Programming is an unnatural
act
Won first Turing award

http://www.cs.yale.edu/homes/perlis-alan/quotes.html

Software Design 8.27

More pointer arithmetic
address one past the end of
an array is ok for pointer
comparison only

what about *(begin+44)?

what does begin++ mean?

how are pointers compared
using < and using == ?

what is value of end - begin?

char * a = new char[44];
char * begin = a;
char * end = a + 44;

while (begin < end)
{

*begin = ‘z’;
begin++; // *begin++ = ‘z’

}

0 1 4315 16 42

Software Design 8.28

What is a C-style string?
array of char terminated by sentinel ‘\0’ char

sentinel char facilitates string functions
‘\0’ is nul char, unfortunate terminology
how big an array is needed for string “hello”?

a string is a pointer to the first character just as an
array is a pointer to the first element

char * s = new char[6];

what is the value of s? of s[0]?
char * string functions in <string.h>

Software Design 8.29

C style strings/string functions
strlen is the # of characters
in a string

same as # elements in
char array?

int strlen(char * s)
// pre: ‘\0’ terminated
// post: returns # chars
{

int count=0;
while (*s++) count++;
return count;

}

Are these less cryptic?

while (s[count]) count++;
// OR, is this right?
char * t = s;
while (*t++);
return t-s;

what’s “wrong” with this
code?

int countQs(char * s)
// pre: ‘\0’ terminated
// post: returns # q’s
{
int count=0;
for(k=0;k <
strlen(s);k++)

if (s[k]==‘q’)
count++;
return count;

}

how many chars examined
for 10 character string?
solution?

Software Design 8.30

<string.h> aka <cstring> functions
strcpy copies strings

who supplies storage?
what’s wrong with s = t?

char s[5];
char t[6];
char * h = “hello”;
strcpy(s,h); // trouble!
strcpy(t,h); // ok

char * strcpy(char* t,char* s)
//pre: t, target, has space
//post: copies s to t,returns t
{

int k=0;
while (t[k] = s[k]) k++;
return t;

}

strncpy copies n chars (safer?)

what about relational
operators <, ==, etc.?
can’t overload operators for
pointers, no overloaded
operators in C
strcmp (also strncmp)

return 0 if equal
return neg if lhs < rhs
return pos if lhs > rhs

if (strcmp(s,t)==0) // equal
if (strcmp(s,t) < 0)// less
if (strcmp(s,t) > 0)// ????

Software Design 8.31

Arrays and pointers
These definitions are related, but not the same
int a[100];
int * ap = new int[10];

both a and ap represent ‘arrays’, but ap is an lvalue

arrays converted to pointers for function calls:
char s[] = “hello”;
// prototype: int strlen(char * sp);
cout << strlen(s) << endl;

multidimensional arrays and arrays of arrays
int a[20][5];
int * b[10]; for(k=0; k < 10; k++) b[k] = new int[30];

