Topic 20: Shortest Paths in Graphs
(CLRS 24.0–24.3, 25.2)

CPS 230, Fall 2001

Digraph $G = (V, E)$ with weight function $W : E \rightarrow \mathbb{R}$

Weight of path $p = v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k$ is

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

"Shortest" path = path of minimum weight.

Applications

- Static/dynamic network routing
- Robot motion planning
• Different variants of shortest path problem:

 – *Single pair shortest path*: Find shortest path from u to v.

 – *Single source shortest path (SSSP)*: Find shortest path from source s to all vertices $v \in V$.

 – *All pair shortest path (APSP)*: Find shortest path from u to v for all $u, v \in V$.

• Note:

 – No algorithm is known for computing a single pair shortest path better than solving the ("bigger") SSSP problem.

 – APSP can be solved by running SSSP $|V|$ times.
 \implies Lets focus on the SSSP problem.
Optimal Substructure

Theorem: Subpaths of shortest paths are shortest paths.

Proof: Cut and paste:

If some subpath were **not** a shortest path, we could substitute the shorter subpath and create an even shorter total path. □
Triangle Inequality

Definition: $\delta(u, v) \equiv$ weight of a shortest path from u to v.

Theorem: $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$

Proof: Shortest path $u \rightarrow \cdots \rightarrow v$ is no longer than any other path $u \rightarrow \cdots \rightarrow v$. In particular, it is no longer than the path concatenating the shortest path $u \rightarrow \cdots \rightarrow x$ with the shortest path $x \rightarrow \cdots \rightarrow v$. □
Is shortest-path well-defined?

Negative weight cycle \Rightarrow no shortest path.

Argument: Can shorten path by traversing cycle. \square
Bellman-Ford Algorithm

Most basic “single-source” shortest-paths algorithm

- Finds shortest path weights from specified source s to all $v \in V$
- Maintains estimate $d[v]$ of path length from s to v, which is updated iteratively
- Actual paths easily reconstructed (CLRS §24.3)
Bellman-Ford Algorithm

\textbf{Bellman-Ford}(G, w, s)
1 \textbf{for} each \(v \in V \)
2 \hspace{1em} \textbf{do} \(d[v] \leftarrow \infty \)
3 \hspace{1em} \(d[s] \leftarrow 0 \) \hspace{1em} \(\triangleright \text{INITIALIZE-SINGLE-SOURCE}(G, s) \)

4 \textbf{for} \(i \leftarrow 1 \) \textbf{to} \(|V| - 1 \)
5 \hspace{1em} \textbf{do for} each edge \((u, v) \in E \) \hspace{1em} \(\triangleright \text{RELAX} \)
6 \hspace{1em} \textbf{do if} \(d[v] > d[u] + w(u, v) \)
7 \hspace{1em} \textbf{then} \(d[v] \leftarrow d[u] + w(u, v) \)

8 \textbf{for} each edge \((u, v) \in E \)
9 \hspace{1em} \textbf{do if} \(d[v] > d[u] + w(u, v) \)
10 \hspace{1em} \textbf{then} no solution

Why call it “Relax”? Chain is getting tighter!
Think of violations of \(d[v] \leq d[u] + w(u, v) \) as “pressure”. The pressure is relaxed by shortening the estimate of the distance from \(s \) to \(v \).
Bellman-Ford Algorithm

Three code sections:

- Lines 1 – 3:
 Initialize: $d[v]$, which will converge to shortest-path values δ.

- Lines 4 – 7:
 Relax: For $|V| - 1$ times, do the following:
 For each edge, do a relaxation step.

- Lines 8 – 10:
 Test: Was a solution achieved (iff no negative-weight cycles)?
Bellman-Ford Algorithm: Running time

Running Time: \(O(V \cdot E) \)

- constants are good
- it is simple
- short code

very practical.
Bellman-Ford Algorithm Example
Bellman-Ford Algorithm Example

• **Initialization.** Put initial d values in nodes:
 \[A \leftarrow 0, \text{rest} \leftarrow \infty. \]

• **1st relaxation pass.** Process edges in order
 \[(A, B), (A, C), (B, C), (B, D), (D, B), (D, C),
 (E, D), (B, E). \]

• **2nd relaxation pass.** Process edges in same order. Only D changes.
Bellman-Ford Algorithm Example

- Can stop when no change is detected

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>init</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>pass 1</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>pass 2</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>pass 3</td>
<td>0</td>
<td>-1</td>
<td>2</td>
<td>-2</td>
<td>1</td>
</tr>
</tbody>
</table>

- The distances in each pass and the convergence speed of the algorithm depend on the order that the edges are processed.
Bellman-Ford Algorithm: Lemma

Lemma: $d[v] \geq \delta(s, v)$ always.

Proof:

- Initially true
- Let v be first vertex for which $d[v] < \delta(s, v)$, and let u be vertex that caused $d[v]$ to change:
 $$d[v] = d[u] + w(u, v)$$
- Then
 $$d[v] < \delta(s, v)$$
 $$\leq \delta(s, u) + \delta(u, v) \quad \text{(Triangle inequality)}$$
 $$\leq \delta(s, u) + w(u, v) \quad \text{(shortest path \leq specific path)}$$
 $$\leq d[u] + w(u, v) \quad (v \text{ is first violation})$$

contradicts $d[v] = d[u] + w(u, v)$ (above).

Therefore, once $d[v]$ reaches $\delta(s, v)$, it can’t change (since $d[v]$ can only decrease, never increase).
Bellman-Ford Algorithm: Correctness

Claim: Bellman-Ford correct (i.e.,
after $|V| - 1$ passes, all the d values are correct)

Proof: Let v be any vertex, and consider a shortest path from s to v (assuming no neg-weight cycles):

$$s \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v$$

- Initially, $d[s] = 0$ is correct
 (and doesn’t change thereafter since the algorithm never increases d)
Bellman-Ford Algorithm: Correctness

Proof: (continued)

- After 1 pass through edges, $d[v_1]$ is correct (and doesn’t change thereafter)

$(d[s]$ is correct, and by the optimal substructure, the shortest distance is $w(s, v_1)$.
1st pass sets $d[v_1] \leftarrow d[s] + w(s, v_1)$, which is the right answer.)

- After 2 passes through edges, $d[v_2]$ is correct (and doesn’t change thereafter)

 ...

- Terminates in $|V| - 1$ passes. Why?
 If no negative-weight cycles:
 - every shortest path is simple (no cycles)
 - longest simple path has $|V| - 1$ edges
Bellman-Ford Algorithm: Correctness

Proof: (continued)

• Thus if no neg-weight cycles, all the $d[v]$ converge in $|V| - 1$ passes.
 Equivalently, if a value $d[v]$ fails to converge after $|V| - 1$ passes, \exists neg-weight cycle.

• Last part of algorithm tests for success by seeing if another pass would change anything.

The converse is also true:
If \exists neg-weight cycle reachable from s, then some value $d[v]$ fails to converge after $|V| - 1$ passes.

(Proof left as exercise.) (*CLRS Theorem 24.4.*)

So... Bellman-Ford can be used to check for negative-weight cycles.
SSSP in DAG

- If graph is acyclic, we can solve SSSP by relaxing outgoing edges from vertices in the topological sort order of the vertices.
- Running time is $O(|E|)$.
Dijkstra’s Algorithm

Dijkstra’s Algorithm:

- Non-negative edge weights
 \[\Rightarrow\] shortest paths always exist.
 (If there are no negative weights, Dijkstra’s algorithm is faster than Bellman-Ford.)

- Like breadth-first-search
 (If all weights = 1, use BFS, otherwise Dijkstra.)

- Use for Q a priority queue keyed by $d[v]$. Greedy, like Prim’s algorithm for MST
 BFS used FIFO queue
Dijkstra’s Algorithm: Pseudocode

\textbf{DIJKSTRA}(G, w, s)
1 for each \(v \in V \)
2 \hspace{1em} do \(d[v] \leftarrow \infty \)
3 \(d[s] \leftarrow 0 \)
4 \(S \leftarrow \emptyset \)
5 \(Q \leftarrow V \)
6 while \(Q \neq \emptyset \)
7 \hspace{1em} do \(u \leftarrow \text{EXTRACT-MIN}(Q) \)
8 \hspace{2em} \(S \leftarrow S \cup \{u\} \)
9 \hspace{1em} for each \(v \in \text{Adj}[u] \)
10 \hspace{2em} do if \(d[v] > d[u] + w(u, v) \)
11 \hspace{2em} then \(d[v] \leftarrow d[u] + w(u, v) \)

What is line 7 doing?
What is line 11 doing?
Dijkstra’s Algorithm: Notes

Observe:

- relaxation step
- setting $d[v]$ updates Q (DECREASE-KEY operation)
- similar to Prim’s minimum-spanning-tree algorithm
Dijkstra’s Algorithm

Example:

```
A 0 10 5
\(\infty\)
B 10 2 3 4
C 3 4 1 5
\(\infty\)
D 6
```

\(\infty\) indicates infinity. The numbers beside the edges represent the weights of the edges.
Another Example of Dijkstra’s Algorithm

![Graphs showing the application of Dijkstra's Algorithm]

- **Vertex in S**
- **Vertex in V \ S**

Topic 20: Shortest Paths in Graphs
Dijkstra’s Algorithm: Run-Time Analysis

- **Extract-Min** executed $|V|$ times
- **Decrease-Key** executed $|E|$ times

$$\text{Time} = |V| \cdot T_{\text{Extract-Min}} + |E| \cdot T_{\text{ Decrease-Key}}$$

Analysis: Look at different Q implementations.

<table>
<thead>
<tr>
<th>Priority queue</th>
<th>$T_{\text{Extract-Min}}$</th>
<th>$T_{\text{Decrease-Key}}$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(</td>
<td>V</td>
<td>)$</td>
</tr>
<tr>
<td>binary heap</td>
<td>$O(\log</td>
<td>V</td>
<td>)$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>$O(\log</td>
<td>V</td>
<td>)$</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm: Analysis

• $Q =$ unsorted array:

 scan to find minimum
 just index and update to change key

• $Q =$ Fibonacci heap

 Note advantage of amortized analysis:
 Can use amortized Fibonacci heap bounds in analysis, as if they were worst-case bounds, and get (real) worst-case bounds on aggregate running time.
Dijkstra’s Algorithm: Correctness

Correctness: Prove that whenever \(u \) is added to \(S \),
\[
d[u] = \delta(s, u)
\]

Proof:

- Note that \(\forall v \quad d[v] \geq \delta(s, v) \)
- Let \(u \) be first vertex added to \(S \) such that there is a path from \(s \) to \(u \) of length shorter than \(d[u] \)
 \[
 \implies d[u] > \delta(s, u)
 \]
- Let’s consider the set \(S \) immediately before \(u \) is processed (i.e., \(u \) is not yet in \(S \), but is about to be picked next):

![Diagram](image-url)
Dijkstra’s Algorithm: Correctness

(Proof continued)

• Let y be first vertex $\in V - S$ on actual shortest path from s to u

$$d[y] = \delta(s, y)$$

Because:

− $d[x]$ is set correctly for y’s predecessor $x \in S$ on the shortest path (by choice of u as first choice for which that’s not true)

− When we put x into S, we relaxed (x, y), giving $d[y]$ its correct value
Dijkstra’s Algorithm: Correctness

(Proof continued)

\[d[u] > \delta(s, u) \]
\[= \delta(s, y) + \delta(y, u) \quad \text{(optimal substructure)} \]
\[= d[y] + \delta(y, u) \]
\[\geq d[y] \quad \text{(no negative weights)} \]

- But \(d[u] > d[y] \implies \) algorithm would have chosen \(y \) to process next, not \(u \). *Contradiction.*
All pairs shortest path (APSP) with nonnegative weights

- In the APSP problem, we want to compute the shortest path between any two vertices $u, v \in V$.
 - The output has size $O(|V|^2)$, so we cannot hope to design a better than $O(|V|^2)$-time algorithm.
- We can solve the problem simply by running Dijkstra’s algorithm $|V|$ times
 \[\implies O(|V| \cdot |E| \log |V|) \] algorithm.
 - In the worst case (dense graph) the running time is $O(|V|^3 \log |V|)$.
- The Floyd-Warshall algorithm (see CLRS Exercise 25.2-4) runs in only $O(|V|^3)$ time by working on adjacency matrix A:

  ```
  FOR $k = 1$ to $|V|$ do
    FOR $i = 1$ to $|V|$ DO
      FOR $j = 1$ to $|V|$ DO
        FI
      OD
    OD
  OD
  ```

- Correctness:
 - We prove correctness by induction.
 - We will prove that, after each iteration of the outer loop on k, the following invariant holds:

 After the kth iteration (out of $|V|$), $A[i, j]$ contains the length of the shortest path from v_i to v_j that (apart from v_i and v_j) only contains vertices of index at most k.
 \[\implies \text{When algorithm terminates we have solved APSP.} \]
 - Proof:
 * Invariant holds initially for $k = 0$ (i.e., we start with adjacency matrix A, and the only allowed path from v_i to v_j is the edge from v_i to v_j).
 * When “adding” vertex with index k, we explicitly check all new paths between v_i and v_j that pass through v_k, for all $|V|^2$ pairs of v_i and v_j.

- Note:
 - We can easily produce adjacency-matrix from adjacency list in $O(|V^2|)$ time.
 - Algorithm runs in $O(|V|^3)$ time, even if the graph is sparse. Using algorithm based on Dijkstra’s algorithm we will get much better performance for sparse graphs.
 - Using a Fibonacci heap, in which DECREASE-KEY operations take constant time amortized, Dijkstra’s algorithm can be improved to $O(|V|^2 \log |V| + |V| \cdot |E|) = O(|V|^3)$ time.