ALG 4.0
Number Theory Algorithms:

(a) GCD
(b) Multiplicative Inverse
(c) Fermat & Euler's Theorems
(d) Public Key Cryptographic Systems
(e) Primality Testing

Greatest Common Divisor

$GCD(u,v) = \text{largest } a \text{ s.t. } a \text{ is a divisor of both } u, v$

Euclid's Algorithm

```
procedure GCD(u,v)
begin
  if v=0 then return(u)
  else return (GCD(v,u mod v))
```

Inductive proof of Correctness:

if a is a divisor of u,v

$\iff a \text{ is a divisor of } u - \left\lfloor \frac{u}{v} \right\rfloor v = u \mod v$
Time Analysis of Euclid's Algorithm for n bit numbers \(u, v\)

\[
T(n) \leq T(n-1) + M(n)
\]

where \(M(n) = \) time to mult two \(n\) bit integers

\[
= \Theta(n^2 \log n \log \log n).
\]

Fibonacci worst case:

\[
u = F_k, \quad v = F_{k+1}
\]

where \(F_0 = 0, F_1 = 1, F_{k+2} = F_{k+1} + F_k, k \geq 0\)

\[
F_k = \frac{\Phi^k}{\sqrt{5}}, \quad \Phi = \frac{1}{2} \left(1 + \sqrt{5}\right)
\]

\[
\Rightarrow \text{Euclid's Algorithm takes } \log_\Phi \left(\sqrt{5} \cdot N\right) = \Theta(n)
\]

stages when \(N = \max(u, v)\).

Improved Algorithm (see AHU)

\[
T(n) \leq T\left(\frac{n}{2}\right) + O(M(n))
\]

\[
= \Theta(M(n) \log n)
\]

Extended GCD Algorithm

```
procedure ExGCD(u, v)

where \(u = (u_1, u_2, u_3)\), \(v = (v_1, v_2, v_3)\)

begin

if \(v_3 = 0\) then return(u)

else return ExGCD(v, u - \(\frac{v_1}{v_3} \cdot u_3\))
```

Theorem

\(\text{ExGCD((1,0,x),(0,1,y))}\)

\(=(x', y', \text{GCD}(x,y))\)

where \(x \cdot x' + y \cdot y' = \text{GCD}(x,y)\)

Proof

Inductively can verify on each call

\[
x_u + y_u = u_3
\]

\[
x_v + y_v = v_3
\]
Corollary

If $\gcd(x, y) = 1$ then x' is the modular inverse of x modulo y

proof

we must show $x \cdot x' = 1 \mod y$

but by previous Theorem,

$I = x \cdot x' + y \cdot y' = x \cdot x' \mod y$

so $I = x \cdot x' \mod y$

Gives Algorithm for Modular Inverse

Modular Laws for $n \geq 1$

let $x \equiv y$ if $x \equiv y \mod n$

Law A if $a \equiv b$ and $x \equiv y$ then $ax \equiv by$

Law B if $a \equiv b$ and $ax \equiv by$ and $\gcd(a, n) = 1$ then $x \equiv y$

let \(\{a_1, \ldots, a_k\} = \{b_1, \ldots, b_k\} \) if $a_i \equiv b_j$ for $i = 1, \ldots, k$ and $\{j_1, \ldots, j_k\} = \{1, \ldots, k\}$
Fermat's Little Theorem
(proof by Euler)

If n prime then $a^n = a \mod n$

proof

if $a = 0$ then $a^n = 0 = a$
else suppose $\gcd(a, n) = 1$

Then $x = ay$ for $y = a^{-1}x$ and any x
so $\{a, 2a, \ldots, (n-1)a\} = \{1, 2, \ldots, n-1\}$

So by Law A,

$$(a)(2a) \ldots (n-1)a = 1 \cdot 2 \cdot \ldots (n-1)$$

So $a^{n-1} = (n-1)! = (n-1)!$

So by Law B

$a^{n-1} = 1 \mod n$

$\varphi(n) = \text{number of integers in } \{1, \ldots, n-1\} \text{ relatively prime to } n$

Euler's Theorem

If $\gcd(a, n) = 1$

then $a^{\varphi(n)} = 1 \mod n$

proof

let $b_1, \ldots, b_{\varphi(n)}$ be the integers $< n$ relatively prime to n
\begin{lemma}
\{b_1, \ldots, b_{\phi(n)}\} \equiv \{ab_1, ab_2, \ldots, ab_{\phi(n)}\}
\end{lemma}

\textbf{proof}

If \(ab_i \equiv ab_j\) then by Law B, \(b_i \equiv b_j\)
Since \(1 = \gcd(b_i, n) = \gcd(a, n)\)
then \(\gcd(ab_i, n) = 1\) so \(ab_i = b_j\)
for \(\{j_1, \ldots, j_{\phi(n)}\} = \{1, \ldots, \phi(n)\}\)

By Law A and Lemma

\((ab_1)(ab_2) \cdots (ab_{\phi(n)}) \equiv b_1b_2 \cdots b_{\phi(n)}\)
so \(a^{\phi(n)} b_1 \cdots b_{\phi(n)} \equiv b_1 \cdots b_{\phi(n)}\)

By Law B \(a^{\phi(n)} \equiv 1 \pmod{n}\)

\begin{center}
\textbf{Taking Powers mod n by "Repeated Squaring"}
\end{center}

\textbf{Problem}

Compute \(a^e \pmod{b}\)

\(e = e_k e_{k-1} \cdots e_1 e_0\) \text{ binary representation}

\[1\] \(X \leftarrow 1\)
\[2\] \text{for } i = k, k-1, \ldots, 0 \text{ do }
\begin{align*}
\text{begin} \\
X &\leftarrow X^2 \pmod{b} \\
\text{if } &e_i = 1 \text{ then } X \leftarrow Xa \pmod{b} \\
\text{end}
\end{align*}

\text{output} \ \prod_{i=0}^{k} a^{e_i 2^i} = a^{\sum e_i 2^i} = a^e \pmod{b}

\textbf{Time Cost}

O(k) mults and additions mod b

\(k = \# \text{ bits of } e\)
Rivest, Sharmir, Adelman (RSA) Encryption Algorithm

Method

- Choose large random primes p, q
 - Let \(n = p \cdot q \)
- Choose large random integer \(d \)
 - Relatively prime to \(\varphi(n) = \varphi(p) \cdot \varphi(q) = (p-1) \cdot (q-1) \)
- Let \(e \) be the multiplicative inverse of \(d \) modulo \(\varphi(n) \)
 - \(e \cdot d \equiv 1 \mod \varphi(n) \)
 - (require \(e > \log n \), else try another \(d \))

Cryptogram

\[C = E(M) = M^e \mod n \]

Theorem

If \(M \) is relatively prime to \(n \), and \(D(x) = x^d \mod n \) then

\[D(E(M)) = E(D(M)) = M \]

proof

\[D(E(M)) = E(D(M)) = M^{e \cdot d} \mod n \]

There must \(\exists \ k > 0 \) s.t.

\(1 = \gcd(d, \varphi(n)) = -k \varphi(n) + de \)

So, \(M^{e \cdot d} = M^{k \varphi(n) + 1} \mod n \)

Since \((p-1) \) divides \(\varphi(n) \)

\[M^{k \varphi(n) + 1} = M \mod p \]

By Euler's Theorem

By Symmetry,

\[M^{k \varphi(n) + 1} = M \mod q \]

Hence \(M^{e \cdot d} = M^{k \varphi(n) + 1} = M \mod n \)

So \(M^{ed} = M \mod n \)
Security of RSA Cryptosystem

Theorem
If can compute \(d \) in polynomial time, then can factor \(n \) in polynomial time

proof
\(e \cdot d - 1 \) is a multiple of \(\varphi(n) \)
But Miller has shown can factor \(n \) from any multiple of \(\varphi(n) \).

Corollary
If can find \(d' \) s.t.
\[M^{d'} = M^d \mod n \]
\(\implies \) \(d' \) differs from \(d \) by \(\text{lcm}(p-1, q-1) \)
\(\implies \) so can factor \(n \).

Rabin's Public Key Crypto System

Use private large primes \(p, q \)

\begin{align*}
\text{public} & \quad n = q \cdot p \cdot \text{key} \\
\text{message} & \quad M \\
\text{cryptogram} & \quad M^2 \mod n
\end{align*}

Theorem
If cryptosystem can be broken, then can factor key \(n \)
proof

\[\alpha = M^2 \mod n \text{ has solutions} \]
\[M = \gamma, \beta, \ n-\gamma, \ n-\beta \]
where \(\beta \neq \{ \gamma, n-\gamma \} \)

But then \(\gamma^2 - \beta^2 = (\gamma - \beta)(\gamma + \beta) = 0 \mod n \)

So either (1) \(p | (\gamma - \beta) \) and \(q | (\gamma + \beta) \)

or either (2) \(q | (\gamma - \beta) \) and \(p | (\gamma + \beta) \)

In either case, two independent solutions for \(M \) give factorization of \(n \), i.e., a factor of \(n \) is \(\gcd(n, \gamma - \beta) \)

Rabin's Algorithm

for factoring \(n \), given a way to break his cryptosystem.

Choose random \(\beta \), \(1 < \beta < n \) s.t. \(\gcd(\beta, n) = 1 \)

let \(\alpha = \beta^2 \mod n \)

find \(M \) s.t. \(M^2 = \alpha \mod n \)

by assumed way to break cryptosystem

\[\text{With probability } \geq \frac{1}{2}, \]
\[M \neq \{ \beta, n - \beta \} \]

\[\Rightarrow \text{ so factors of } n \text{ are found} \]

\[\text{else } \text{ repeat with another } \beta \]

Note: Expected number of rounds is 2
Quadratic Residues

\[a \text{ is quadratic residue of } n \]
\[\text{if } x^2 \equiv a \mod n \text{ has solution} \]

Euler:
- If \(n \) is odd, prime and \(\gcd(a, n) = 1 \), then
- \(a \) is quadratic residue of \(n \)
 - if \(a^{(n-1)/2} \equiv 1 \mod n \)

Jacobi Function

\[
J(a, n) = \begin{cases}
1 & \text{if } \gcd(a, n) = 1 \text{ and } a \text{ is quadratic residue of } n \\
-1 & \text{if } \gcd(a, n) = 1 \text{ and } a \text{ is not quadratic residue of } n \\
0 & \text{if } \gcd(a, n) \neq 1
\end{cases}
\]

Gauss’s Quadratic Reciprocity Law
- If \(p, q \) are odd primes,
- \(J(p, q) \cdot J(q, p) = (-1)^{(p-1)(q-1)/4} \)

Rivest Algorithm:

\[
J(a, n) = \begin{cases}
1 & \text{if } a = 1 \\
J(a/2, n) \cdot (-1)^{(n^2-1)/8} & \text{if } a \text{ even} \\
J(n \mod a, a) \cdot (-1)^{(a-1)(n-1)/2} & \text{else}
\end{cases}
\]
Theorem (Fermat)

\(n > 2 \) is prime iff

\[\exists \ x, \ 1 < x < n \]

\(1 \)

\(x^{n-1} \equiv 1 \mod n \)

\(2 \)

\(x^i \neq 1 \mod n \) for all \(i \in \{1, 2, \ldots, n-2\} \)

Theorem & Primes NP

(Pratt)

proof

input \(n \)

\(n=2 \) \(\Rightarrow \) output "prime"

\(n=1 \) or \(n \) even and \(n>2 \) \(\Rightarrow \) output "composite"

else guess \(x \) to verify Fermat’s Theorem

Check (1) \(x^{n-1} \equiv 1 \mod n \)

To verify (2) guess prime factorization

\(\frac{n-1}{n_i} \)

\((a) \) recursively verify each \(n_i \) prime

\((b) \) verify \(x^{\frac{n-1}{n_i}} \neq 1 \mod n \)

note

if \(x^{\frac{n-1}{n_i}} = 1 \mod n \)

the least \(y \) s.t. \(x^y = 1 \mod n \) must divide \(n-1 \).

So \(x^a = 1 \mod n \)

let \(a = \frac{(n-1)}{n_i} \) so \(1 \equiv x^a = x^{\frac{n-1}{n_i}} \mod n \)
Primality Testing

wish to test if n is prime

technique
\[W_n(a) = \begin{cases}
\text{"a witnesses that } n \text{ is composite"} \\
\text{true} \Rightarrow n \text{ composite} \\
\text{false} \Rightarrow \text{don't know}
\end{cases} \]

Goal of Randomized Primality Tests:

for random \(a \in \{1, \ldots, n-1\} \)
\[n \text{ composite } \Rightarrow \text{Prob}(W_n(a) \text{ true }) > \frac{1}{2} \]

So \(\frac{1}{2} \) of all \(a \in \{1, \ldots, n-1\} \)
are "witnesses to compositness of n"

Solovey & Strassen Primality Test

\[W_n(a) = (\gcd(a,n) \neq 1) \]

or \[J(a,n) \neq a^{(n-1)/2} \mod n \]

test if Gauss's Quad. Recip. Law is violated
Definitions

\[Z_n^* = \text{set of all nonnegative numbers } \leq n \]
which are relatively prime to \(n \).

generator \(g \) of \(Z_n^* \)
such that for all \(x \in Z_n^* \)
there is \(i \) such that \(g^i = x \mod n \)

Theorem of Solovey & Strassen

If \(n \) is composite, then \(|G| \leq \frac{n-1}{2} \)
where \(G = \{ a \mid W_n(a \mod n) \text{ false} \} \)

\[\text{Case } G \neq Z_n^* \Rightarrow \text{G is subgroup of } Z_n^* \]
\[\Rightarrow |G| \leq \frac{|Z_n^*|}{2} \leq \frac{n-1}{2} \]

Case \(G = Z_n \)
Use Proof by Contradiction

so \(a^{(n-1)/2} = J(a,n) \mod n \)
for all \(a \) relatively prime to \(n \)

Let \(n \) have prime factorization
\[n = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_k^{\alpha_k}, \quad \alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_k \]

Let \(g \) be a generator of \(Z_{m_1}^* \) where \(m_1 = p_1^{\alpha_1} \)
Then by Chinese Remainder Theorem,

\[\exists \text{unique } a \text{ s.t. } a = g \mod m \]

\[a = 1 \mod \left(\frac{n}{m_i} \right) \]

Since \(a \) is relatively prime to \(n \),

\[a \in \mathbb{Z}_n^* \text{ so } \]

\[a^{\alpha_i - 1} = 1 \mod n \text{ and } g^{\alpha_i - 1} = 1 \mod n \]

Case \(\alpha_1 \geq 2 \).

Then order of \(g \) in \(\mathbb{Z}_n^* \)

\[\alpha_i - 1 \]

is \(p_1 \) \((p_1 - 1)\) by known formula,

a contradiction since the order divides \(n-1 \).
We have shown $J(a,n) = -1 \mod n$
\[= -1 \mod \left(\frac{n}{m} \right)\]

But by assumption $a = 1 \mod \left(\frac{n}{m} \right)$

so $a^{(n-1)/2} = 1 \mod \left(\frac{n}{m} \right)$

Hence $a^{(n-1)/2} \neq J(a,n) \mod \left(\frac{n}{m} \right)$

a contradiction with Gauss's Law!

Miller's Primality Test

\[W_n(a) = \begin{cases}
(gcd(a,n) \neq 1) \\
\text{or} \ (a^{n-1} \neq 1 \mod n) \\
\text{or} \ \gcd(a^{(n-1)/2^i} \mod n-1, n) \neq 1 \\
\text{for } i \in \{1, \ldots, k\} \\
\text{where } k = \max \{t \mid 2^t \text{ divides } n-1\}
\end{cases}\]

Theorem

(Miller)

Assuming the extended RH, if n *is composite, then* $W_n(a)$ *holds for some* $a \in \{1, 2, \ldots, c \log^2 n\}$.
Miller's Test assumes extended RH (not proved)

Rabin: choose a random \(a \in \{1, \ldots, n-1\} \) test \(W_n(a) \)

Theorem Rabin

if \(n \) is composite then

\[
\text{Prob} (W_n(a) \text{ holds}) > \frac{1}{2}
\]

⇒ gives another randomized, polytime algorithm for primality!