Algorithm

Breadth First Search

Input: undirected graph $G = (V, E)$ with root $r \in V$

Initialize:

$L \leftarrow 0$

for each $v \in V$ do

visit(v) \leftarrow false

LEVEL(0) $\leftarrow \{r\}$; visit (r) \leftarrow true

while LEVEL(L) $\neq \{\}$ do

begin

LEVEL(L+1) $\leftarrow \{\}$

for each $v \in$ LEVEL(L) do

begin

for each $\{v,u\} \in E$ s.t. not visit (u) do

add u to LEVEL(L+1)

visit (u) \leftarrow true

end

end

$L \leftarrow L+1$

end

Output: LEVEL(0), LEVEL(1), ..., LEVEL(L-1)

$O(|V|+|E|)$ time cost
Single Source Shortest Paths Problem

input

digraph G=(V,E) with root r ∈ V
weighting d:E → positive reals

Dijkstra’s Greedy algorithm

initialize:

Q ← {}
for each v ∈ V-{r} do D(v) ← ∞
D(r) ← 0
until no change do
choose a vertex u ∈ V-Q with minimum D(u)
add u to Q
for each (u,v) ∈ E s.t. v ∈ V-Q do
D(v) ← min(D(v), D(u) + d(u,v))

output

∀ v ∈ V
D(v) = weight of min. path from r to v
proof of Dijkstra's Algorithm

use induction hypothesis:

1. \(\forall v \in V, \) D(v) is weight of the minimum cost path from r to v, where p visits only vertices of \(Q \cup \{v\} \)

2. \(\forall v \in Q, \) D(v) = minimum cost path from r to v

basis: D(r) = 0 for Q={r}

<table>
<thead>
<tr>
<th>Q</th>
<th>u</th>
<th>D(1)</th>
<th>D(2)</th>
<th>D(3)</th>
<th>D(4)</th>
<th>D(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi)</td>
<td>1</td>
<td>0</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>{1}</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>(\infty)</td>
<td>100</td>
</tr>
<tr>
<td>{1,2}</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>90</td>
</tr>
</tbody>
</table>
Induction step

if $D(u)$ is minimum for all $u \in V - Q$ then claim:

1. $D(u)$ is minimum cost of path from r to u in G
 - Suppose not: then path p with weight $< D(u)$ and such that p visits a vertex $w \in V - (Q \cup \{u\})$. Then $D(w) < D(u)$, contradiction.

2. is satisfied by $D(v) = \min\{D(v), D(u) + d(u,v)\}$ for $\forall v \in Q \cup \{u\}$ \((u,v) \in E\)

Time Cost: per iteration

\[
\begin{array}{l}
\quad - O(\log |V|) \text{ to find } u \in V - Q \text{ with min } D(u) \\
\quad - O(\text{degree}(u)) \text{ to update weights}
\end{array}
\]

Since there are $|V|$ iterations,

Total Time $O(|V| (\log |V|) + |E|)$
Graph \(G = (V,E) \)

matching \(M \) is a subset of \(E \) satisfies

if \(e_1, e_2 \) distinct edges in \(M \)

Then they have no vertex in common

example

Graph Matching Problem:

Find a **maximum** size matching

Let \(G = (V,E) \) have matching \(M \)

goal: find a larger matching

definitions

vertex \(v \) is **matched** if \(v \) is in an edge of \(M \)

An **augmenting path** \(p=(e_1, e_2, \ldots, e_k) \)

require

begins and ends at unmatched vertices

\[e_1, e_3, e_5, \ldots, e_k \in E-M \]

\[e_2, e_4, \ldots, e_{k-1} \in M \]
Theorem

M is maximum matching if and only if there is no augmenting path relative to M.

Proof

1. If M is a smaller matching and p is an augmenting path for M, then M + p is a matching size $|M| + 1$.

2. If M and M' are matchings with $|M| < |M'|$ then M ⊕ M' contains an augmenting path for M.

Claim

M ⊕ M' contains an augmenting path for M.

Proof

The graph $G' = (V, M ⊕ M')$ has only paths with edges alternating between M and M'.

Repeatedly delete a cycle in G' (with equal number of edges in M, M')

Since $|M| < |M'|$ must eventually get augmenting path remaining for M.
Algorithm Maximum Matching

input graph $G=(V,E)$

[1] $M \leftarrow \{\}$

[2] while there exists an augmenting path p relative to M
 do $M \leftarrow M \oplus P$

[3] output maximum matching M

Remaining problem:
Find augmenting path

Assume weighting $d:E \rightarrow \mathbb{R}^+ = \text{pos. reals.}$

Theorem
Let M be maximum weight among matchings of size $|M|$. Let p be an augmenting path for M of maximum weight. Then matching $M \oplus P$ is of maximum weight among matchings of size $|M|+1$.

proof
Let M' be any maximum weight matching of size $|M|+1$. Consider the graph $G'=(V, M \oplus M')$. Then the maximum weight augmenting path p in G' can be shown to give a matching $M \oplus P$ of the same weight as M'.
Assume G is bipartite graph with matching M

Use Breadth-First Search:

LEVEL(0) = some unmatched vertex r

for odd \(L > 0 \),
 LEVEL(L) = \{ u | \{v,u\} \in E-M \}
 when \(v \in \text{LEVEL}(L-1) \)
 and u in no lower level

for even \(L > 0 \),
 LEVEL(L) = \{ u | \{v,u\} \in M \}
 where \(v \in \text{LEVEL}(L-1) \)
 and u in no lower level

Cases
(1) If for some odd \(L > 0 \),
 LEVEL(L) contains an unmatched vertex u
 then the Breadth First Search tree T has
 an augmenting path from r to u

(2) Otherwise no augmenting path exists, so
 M is maximal.
Bipartite Graph \(G = (V, E) \)

\[V = V_1 \cup V_2, \quad V_1 \cap V_2 = \emptyset \]

\(E \) is a subset of \(\{ \{u, v\} | u \in V_1, v \in V_2\} \)

Theorem

If \(G = (V, E) \) is a bipartite graph, then the maximum matching can be constructed in \(O(|V||E|) \) time.

proof

Each stage requires \(O(|E|) \) time for construction of augmenting path.

Generalizations:

1. **Compute Edge Weighted Maximum Matching**
2. **Edmonds gives a polynomial time algorithm for maximum matching of any graph**
Let M be matching in general graph G

Fix starting vertex r
unmatched vertex

Let vertex $v \in V$ be **even** if

\[\exists \text{ even length augmenting path from } r \text{ to } v \]

and **odd** if

\[\exists \text{ odd length augmenting path from } r \text{ to } v. \]

Case

G is bipartite

\[\Rightarrow \text{ no vertex is both even and odd} \]

Case

G is **not** bipartite

\[\Rightarrow \text{ some vertices may be both even and odd!} \]
Theorem

If G' is formed from G by shrinking of blossom B, then G contains an augmenting path iff G' does.

proof

(1) If G' contains an augmenting path p, then if p visits blossom B we can insert an augmenting subpath p' within blossom into p to get a new augmenting path \hat{p} for G.

(2) If G contains an augmenting path, then apply Edmond’s blossom shrinking algorithm to find an augmenting path in G'.

Edmond's Blossom Shrinking Algorithm

input Graph $G=(V,E)$ with matching M

initialization $\overline{E} = \{(v,w),(w,v) \mid \{v,w\} \in E\}$

comment Edmond’s algorithm will construct a forest of trees whose paths are partial augmenting paths

Note: We will let $P(v) = \text{parent of vertex } v$

\[
\begin{align*}
[0] & \text{ for each unmatched vertex } v \in V \\
& \text{ do } \text{ label } v \text{ as } "\text{even}" \\
[1] & \text{ for each matched } v \in V \text{ do } \\
& \text{ label } v \text{ "unreached" } \\
& \text{ set } P(v) = \text{null } \\
& \text{ if } v \text{ is matched to edge } \{v,w\} \\
& \quad \text{ then } \text{mate}(v) \leftarrow w \\
& \text{ od }
\end{align*}
\]
Edmond's Main Loop:

Choose an unexplored edge \((v, w) \in \bar{E}\) where \(v\) is "even"

(if none exists, then terminate and output current matching \(M\), since there is no augmenting path)

Case 1
if \(w\) is "odd" then do nothing.

Case 2
if \(w\) is "unreached" and matched then set \(w\) "odd" and set mate \((w)\) "even"

\[P(w) \leftarrow v, \ P(\text{mate}(w)) \leftarrow w\]

\(v\) even \(w\) odd \(\text{mate}(w)\) even

Case 3
if \(w\) "even" and \(v, w\) are in distinct trees \(T, T'\) then output augmenting path \(p\) from root of \(T\) to \(v\) through \(\{v, w\}\), in \(T'\) to root.

Case 4
\(w\) is "even" and \(v, w\) in same tree \(T\) then \(\{v, w\}\) forms a blossom \(B\) containing all vertices which are both (i) a descendant of \(\text{LCA}(v, w)\) and (ii) an ancestor of \(v\) or \(w\)

where \(\text{LCA}(v, w) = \text{least common ancestor of} v, w\) in \(T\)

Shrink all vertices of \(B\) to a single vertex \(b\). Define \(p(b) = p(\text{LCA}(v, w))\) and \(p(x) = b\) for all \(x \in B\)
Lemma: Edmond's blossom-shrinking algorithm succeeds iff \(\exists \) an augmenting path in G

proof: Uses an induction on blossom shrinking stages

Time Bounds: \(O(n^4) \).

[1] [Gabow and Tarjan] show

Can implement in time \(O(nm) \)
all \(O(n) \) stages of matching algorithms
taking \(O(m) \) time per stage for blossom shrinking

[2] [Micali and Vazirani] reduce

time to \(O(\sqrt{n}m) \) for unweighted matching in general graphs.

(Idea: Use network flow to get augmented paths).