15.1-5 Given an element \(x \) in an \(n \)-node order-statistic binary tree and a natural number \(i \), how can the \(i \)th successor of \(x \) be determined in \(O(\lg n) \) time.

This problem can be solved if our data structure supports two operations:

- **Rank(\(x \))** – what is the position of \(x \) in the total order of keys?

- **Get(\(i \))** – what is the key in the \(i \)th position of the total order of keys?

What we are interested in is \(\text{Get}(\text{Rank}(x) + i) \).

In an order statistic tree, each node \(x \) is labeled with the number of nodes contained in the subtree rooted in \(x \).

\[\text{Implementing both operations involves keeping track of how many nodes lie to the left of our path.} \]