Median and Order Statistics

Input: An array $A[1..n]$ of n distinct elements, an integer $1 \leq i \leq n$.

Output: The i-th largest element in the array A
Random-Select(S, i) \hspace{1cm} (i \leq |S|).

1. If $|S| = 1$ then return S.

2. Choose a random element y uniformly from S.

3. Compare all elements of S to y. Let

 \[
 S_1 = \{ x \in S \mid x \leq y \}, \hspace{0.5cm} S_2 = \{ x \in S \mid x > y \}.
 \]

4. If $|S_1| = n$ then

 4.1 If $i = n$ return $\{y\}$, else $S_1 = S_1 - \{y\}$

5. If $|S_1| \geq i$ then return Random-Select(S_1, i) else return Random-Select($S_2, i - |S_1|$);
Correctness

Theorem 1. The algorithm returns a singleton with the correct value.

Proof.

By induction on the depth of the recursion, in each call to Random-Select(S', i'), $i' \leq |S'|$ and the i' largest element in S' is the i largest element in S.

When $|S'| = 1$, it includes the i largest element in S. \square
Run-time

Theorem 2. *The worst-case run-time of the algorithm is $O(n^2)$.***

Proof. In the worst case the size of the set that includes the i-th largest element decreases by one in each iteration. □
Expected run-time

Theorem 3. The expected run-time of the algorithm is $O(n)$.

Proof.

Without loss of generality we can assume that in each iteration the i-th largest element is in the larger of the two sets S_1 and S_2.

$T(n) =$ the expected run-time on a set of n elements.

\[
T(n) \leq \frac{1}{n} \sum_{k=1}^{n-1} T(\text{Max}[k, n-k]) + \alpha n \\
\leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} T(k) + \alpha n
\]
We show that $T(n) \leq cn$ for some constant $c > 0$.

$$
T(n) \leq \frac{2}{n} \sum_{k=[n/2]}^{n-1} ck + \alpha n
\leq \frac{2c}{n} \left(\frac{1}{2} \right) \left(\frac{3n}{2} \right) \left(\frac{n}{2} \right) + \alpha n
\leq \frac{3}{4} cn + \alpha n
\leq cn
$$

\square
Linear Time Deterministic Selection Algorithm

Theorem 4. There is a deterministic algorithm that finds the i-th largest element in an unsorted array of n elements in $O(n)$ time.
Select \((S, i)\) - Selects the \(i\)-th largest element in the set \(S\).

1. \(n = |S|\).

2. Partition \(S\) into \(\lfloor \frac{n}{5} \rfloor\) groups of 5 elements each, and a leftover group of up to 4 elements.

3. Find the median of each of the groups, let \(R\) be the set of these \(\lceil \frac{n}{5} \rceil\) values.

4. \(y = \text{Select}(R, \lfloor \frac{|R|}{2} \rfloor)\);

5. Compare all elements of \(S\) to \(y\). Let

\[
S_1 = \{x \in S \mid x \leq y\}, \quad S_2 = \{x \in S \mid x > y\}.
\]

6. If \(|S_1| \geq i\) then return \(\text{Select}(S_1, i)\) else return \(\text{Select}(S_2, i - |S_1|)\);
Correctness

Theorem 5. The algorithms returns the correct value.

Proof. By inductions on the calls to select() in step 6. □
Run-time

Theorem 6. The run-time of the algorithm is $O(n)$.

Proof.

How many elements in S are larger than y, the “median of medians” value computed in step 4 of the algorithm?

Excluding the leftover group, and the group that includes y, in at least half of the remaining groups, there are at least three elements that are $> y$. Thus, at least

$$3\left(\frac{1}{2}\left\lceil \frac{n}{5} \right\rceil - 2\right) \geq \frac{3n}{10} - 6$$

in S are greater than y.

Similarly, at least $\frac{3n}{10} - 6$ elements in S are $\leq y$.

Thus, select is called in step 6 with at most $\frac{7n}{10} + 6$ elements.
\[T(n) = \text{run-time on sets of size } n. \]

\[T(n) \leq T(\lceil \frac{n}{5} \rceil) + T(\frac{7n}{10} + 6) + \alpha n. \]

We show that \(T(n) \leq cn \) for some constant \(c > 0 \).

\[T(n) \leq c(n/5 + 1) + c(7n/10 + 6) + \alpha n \]
\[\leq 9cn/10 + 7c + \alpha n \]
\[\leq cn \]

for \(n > 70 \) and sufficiently large \(c \). \(\square \)