Cryptosystem

Traditional Cryptosystems:

• The two parties agree on a **secret** (one to one) function f.

• To send a message M, the sender sends the message $f(M)$.

• The receiver computes $f^{-1}(f(M))$.

Advantage: Cannot be broken if the function f is used only once (or very few times).

Disadvantage: The two parties need a **secure** channel to agree on secrete keys.
Public Key Cryptosystem

Bob needs to send a secret message to Alice:

• Alice generates two functions $P_A()$ and $S_A()$, such that
 1. For any legal message M, $S_A(P_A(M)) = M$.
 2. $S_A()$ and $P_A()$ are easy to compute.
 3. It is computationally hard to compute $P_A^{-1}()$.

• Alice publishes the function $P_A()$.

• Bob sends Alice the message $P_A(M)$.

• Alice computes $M = S_A(P_A(M))$.

To decrypt the message without the function $S_A()$ one needs to compute $P_A^{-1}()$.
Digital Signatures

Bob needs to verify (and be able to prove) that Alice sent him a message M:

- Alice generates two functions $P_A()$ and $S_A()$, such that
 1. For any legal message M, $P_A(S_A(M)) = M$.
 2. $S_A()$ and $P_A()$ are easy to compute.
 3. It is computationally hard to compute $P_A^{-1}()$.

- Alice publishes the function $P_A()$.

- Alice sends the message $(M, S_A(M))$ to Bob.

- Bob verifies that $P_A(S_A(M)) = M$

To forge Alice’s signature one needs to compute $P_A^{-1}()$.
Challenge

How to generate a pair of functions \((S_A(), P_A())\) such that for any \(M\):

- \(S_A(P_A(M)) = M\) and \(P_A(S_A(M)) = M\) and it is easy to compute.

- Without the function \(S_A()\), the function \(P_A()\) is hard to “invert” (“one-way function”).

Almost all cryptosystems today use public-key.

We’ll study one such method: RSA.
The RSA Cryptosystem

1. Select at random two LARGE prime numbers p and q (100-200 decimal digits).

2. Compute $n = pq$.

3. Select a small odd integer e relatively prime to $\phi(n) = (p - 1)(q - 1)$.

4. Compute d such that $ed = 1 \mod \phi(n)$ (d exists and is unique!!!).

5. Publish the public key function $P_A(M) = M^e \mod n$ (the pair (e, n)).

6. Keep secret the secret key function $S_A(C) = C^d \mod n$.
Theorem 1. *The RSA system is correct, i.e.*

- $S_A(P_A(M)) = M$;
- $P_A(S_A(M)) = M$
Divisibility

Integer a divides integer b iff $\frac{b}{a}$ is an integer.

The greatest common divisor of a and b,

$$d = \gcd(a, b)$$

is the largest integer that divides both a and b.

Integers a and b are relatively prime if

$$\gcd(a, b) = 1$$

Integer p is a prime number if for any $a < p$, $\gcd(p, a) = 1$.
Theorem 2. If \(d = \gcd(a, b) \) then there are integers \(x \) and \(y \) such that

\[
d = ax + by
\]

Proof. Let \(s \) be the smallest positive integer such that \(s = ax + by \) for some integers \(x \) and \(y \).

Let \(q = \left\lfloor \frac{a}{s} \right\rfloor \).

\[
a \mod s = a - qs = a - q(ax + by) = a(1 - qx) + b(-qy)
\]

Thus \(a \mod s \) is also a linear combination of \(a \) and \(b \).
Since \(a \mod s < s\) and \(s\) is the smallest linear combination of \(a\) and \(b\), \(a \mod s = 0\), and \(s\) divides \(a\).

Similarly \(s\) divides \(b\), and \(\gcd(a, b) \geq s\).

But \(\gcd(a, b)\) divides \(s\), thus \(s = \gcd(a, b)\). \(\square\)
Theorem 3. If e and $m = \phi(n)$ are relatively prime the equation

$$ed = 1 \mod m$$

has a unique solution for d.

Proof. Since $\gcd(e, m) = 1$ there are integers x and y such that

$$ex + my = 1$$

or

$$ex - 1 = 0 \mod m$$
Fermat’s Theorem

Theorem 4. For any integer a and prime p

$$a^{p-1} \mod p = 1$$
The Chinese Reminder Theorem

Corollary 1. If \(n_1, n_2, \ldots, n_k \) are pairwise relatively prime and \(n = n_1 n_2 \cdot n_k \), then for all integer \(a \) and \(b \),

\[
a = b \mod n_i
\]

for all \(i = 1, \ldots, k \) iff

\[
a = b \mod n
\]
Theorem 5. Let $gcd(p, q) = 1$ and assume that

$$M^{ed} = M \mod p, \quad \text{and} \quad M^{ed} = M \mod q.$$

Let $n = pq$ then

$$M^{ed} = M \mod n$$

Proof. There are integers k_1 and k_2 such that

$$M^{ed} = M + k_1p, \quad \text{and} \quad M^{ed} = M + k_2q.$$

Thus, $k_1p = k_2q$.

If $k_1 = k_2 = 0$, then $M^{ed} = M = M \mod n$

Else, since $gcd(p, q) = 1$, q divides k_1 and

$$M^{ed} = M + k_3(pq) = M \mod n.$$

□
Theorem 6. The RSA system is correct, i.e. $S_A(P_A(M)) = M$ and $P_A(S_A(M)) = M$.

Proof.

$$P_A(S_A(M)) = S_A(P_A(M)) = M^{ed} \mod n.$$

We need to show that $M^{ed} \mod n = M$.

Since $ed = 1 \mod \phi(n)$, for some integer k

$ed = 1 + k(p-1)(q-1)$.

If $M = 0 \mod p$ then $M^{ed} = M \mod p$,

If $M \neq 0 \mod p$ then

$$M^{ed} = M^{1+k(p-1)(q-1)} \mod p$$
$$= M(M^{p-1})^{k(q-1)} \mod p$$
$$= M \mod p$$
Similarly $M^{ed} = M \mod q$.

We have

\[M^{ed} = M \mod p \]
\[M^{ed} = M \mod q \]

\[n = pq \], thus by the Chinese reminder theorem for all M:

\[M^{ed} = M \mod n \]

\(\square\)
Complexity

Theorem 7. Encrypting and decrypting using the RSA method takes $O(\log n)$ multiplication steps.
Security

If an adversary can factor n it can “guess” $S_A()$.

Conjecture: Factoring a large number is “hard”.

Conjecture: If factoring is hard breaking RSA is hard.