
Meeting 4 September 8, 2005

Dynamic Programming

Sometimes, divide-and-conquer leads to overlapping
subproblems and thus to redundant computations. It is not
uncommon that the redundancies accumulate and cause
an exponential amount of wasted time. We can avoid
the waste using a simple idea: solve each subproblem
only once. To be able to do that, we have to add a cer-
tain amount of book-keeping to remember subproblems
we have already solved. The technical name for this de-
sign paradigm is dynamic programming.

Edit distance. We illustrate dynamic programming us-
ing the edit distance problem, which is motivated by ques-
tions in genetics. We assume a finite set of characters
or letters, Σ, which we refer to as the alphabet, and we
consider strings or words formed by concatenating finitely
many characters from the alphabet. The edit distance be-
tween two words is the minimum number of letter inser-
tions, letter deletions, and letter substitutions required to
transform one word to the other. For example, the edit
distance between FOOD and MONEY is at most four:

FOOD → MOOD → MOND→ MONED→ MONEY

A better way to display the editing process is the gap rep-
resentation that places the words one above the other, with
a gap in the first word for every insertion and a gap in the
second word for every deletion:

F O O D

M O N E Y

Columns with two different characters correspond to sub-
stitutions. The number of editing steps is therefore the
number of columns that do not contain the same character
twice.

Prefix property. It is not difficult to see that you cannot
get from FOOD to MONEY in less than four steps. However,

for longer examples it seems considerably more difficult
to find the minimum number of steps or to recognize an
optimal edit sequence. Consider for example

A L G O R I T H M

A L T R U I S T I C

Is this optimal or, equivalently, is the edit distance between
ALGORITHM and ALTRUISTIC six? Instead of answer-
ing this specific question, we develop a dynamic program-
ming algorithm that computes the edit distance between
an m-character string A[1..m] and an n-character string
B[1..n]. Let E(i, j) be the edit distance between the pre-
fixes of length i and j, that is, between A[1..i] and B[1..j].
The edit distance between the complete strings is therefore
E(m, n). A crucial step towards the development of this
algorithm is the following observation about the gap rep-
resentation of an optimal edit sequence.

PREFIX PROPERTY. If we remove the last column of an
optimal edit sequence then the remaining columns
represent an optimal edit sequence for the remaining
substrings.

We can easily prove this claim by contradiction: if the
substrings had a shorter edit sequence, we could just glue
the last column back on and get a shorter edit sequence of
the original strings.

Recursive formulation. We use the Prefix Property to
develop a recurrence relation for E. The dynamic pro-
gramming algorithm will be a straightforward implemen-
tation of that relation. There are a couple of obvious base
cases:

• Erasing: we need i deletions to erase an i-character
string, E(i, 0) = i.

8

• Creating: we need j insertions to create a j-
character string, E(0, j) = j.

In general, there are four possibilities for the last column
in an optimal edit sequence.

• Insertion: the last entry in the top row is empty,
E(i, j) = E(i, j − 1) + 1.

• Deletion: the last entry in the bottom row is empty,
E(i, j) = E(i − 1, j) + 1.

• Substitution: both rows have characters in the last
column that are different, E(i, j) = E(i − 1, j −
1) + 1.

• No action: both rows end in the same character,
E(i, j) = E(i − 1, j − 1).

Let P be the logical proposition A[i] 6= B[j] and denote
by |P | its indicator variable: |P | = 1 if P is true and |P | =
0 if P is false. We can now summarize and for i, j > 0
get the edit distance as the smallest of the possibilities:

E(i, j) = min







E(i, j − 1) + 1
E(i − 1, j) + 1
E(i − 1, j − 1) + |P |







.

The algorithm. If we turned this recurrence relation di-
rectly into a divide-and-conquer algorithm, we would have
the following horrible recurrence for the running time:

T (m, n) = T (m, n − 1) + T (m − 1, n)

+ T (m− 1, n − 1) + 1.

The solution to this recurrence is exponential in m and n,
which is clearly not the way to go. Instead, let us build
an m + 1 times n + 1 table of possible values of E(i, j).
We can start by filling in the base cases, the entries in the
0-th row and column. To fill in any other entry, we need
to know the values directly above, directly to the left, and
both above and to the left. If we fill the table from top to
bottom and from left to right then whenever we reach an
entry, the entries it depends on are already available.

int EDITDISTANCE(int m, n)
for i = 0 to m do E[i, 0] = i endfor ;
for j = 1 to n do E[0, j] = j endfor ;
for i = 1 to m do
for j = 1 to n do

E[i, j] = min{E[i, j − 1] + 1, E[i− 1, j] + 1,

E[i − 1, j − 1] + |A[i] 6= B[j]|}
endfor

endfor ;
return E[m, n].

Since there are (m+1)(n+1) entries in the table and each
takes a constant time to compute, the total running time is
in O(mn).

An example. The table constructed for the conversion
of ALGORITHM to ALTRUISTIC is shown in Figure 5.
Boxed numbers indicate places where the two strings have
equal characters. The arrows indicate the predecessors
that define the entries. Each direction of arrow corre-
sponds to a different edit operation: horizontal for inser-
tion, vertical for deletion, and diagonal for substitution.
Dotted diagonal arrows indicate free substitutions of a let-
ter for itself.

A

L

I

G

O

R

T

H

M

A L T R U I S T I C

0 41 2 3 5 6 7 8

3

9

4

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

10

1 0 1 2 3 4 5 6 7 8

2 1 1 2 3 4 5 6 7 8

3 2 2 2 3 4 5 6 7 8

4 3 2 3 4 5 6 7 8

5 4 4 3 3 3 4 5 6 7

6 5 4 4 4 4 5 64

7 6 5 5 5 5 5 5 5 6

8 7 6 6 6 6 6 6 6 6

Figure 5: The table of edit distances between all prefixes of
ALGORITHM and of ALTRUISTIC . The shaded area highlights
the optimal edit sequences, which are paths from the upper left
to the lower right corner.

Recovering the edit sequence. By construction, there
is at least one path from the upper left to the lower right
corner, but often there will be several. Each such path
describes an optimal edit sequence. For the example at
hand, we have three optimal edit sequences:

A L G O R I T H M

A L T R U I S T I C

A L G O R I T H M

A L T R U I S T I C

9

A L G O R I T H M

A L T R U I S T I C

They are easily recovered by tracing the paths backward
from the end to the beginning. The following algorithm
recovers an optimal solution that also minimizes the num-
ber of insertions and deletions.

void R(int i, j)
if i > 0 or j > 0 then
switch incoming arrow:
case ↘: R(i − 1, j − 1); print (A[i], B[j])
case ↓: R(i − 1, j); print (A[i],)
case →: R(i, j − 1); print (, B[j]).

endswitch
endif.

Summary. The structure of dynamic programming is
again similar to divide-and-conquer, except that the sub-
problems to be solved overlap. As a consequence we get
different recursive paths to the same subproblems. To de-
velop a dynamic programming algorithm that avoids re-
dundant solutions, we generally proceed in two steps:

1. We formulate the problem recursively. In other
words, we write down the answer to the whole prob-
lem as a combination of the answers to smaller sub-
problems.

2. We build solutions from bottom up. Starting with the
base cases, we work our way up to the final solution
and (usually) store intermediate solutions in a table.

For dynamic programming to be effective, we need a
structure that leads to at most some polynomial number
of different subproblems. Most commonly, we deal with
sequences, which have linearly many prefixes and suffixes
and quadratically many contiguous substrings.

10

