
Meeting 6 September 15, 2005

Binary Search Trees

One of the purposes of sorting is to facilitate fast search-
ing. However, while a sorted sequence stored in a lin-
ear array is good for searching, it is expensive to add and
delete items. Binary search trees give you the best of both
worlds: fast search and fast update.

Definitions and terminology. We begin with a recursive
definition of the most common type of tree used in algo-
rithms. A (rooted) binary tree is either empty or a node
(the root) with a binary tree as left subtree and binary tree
as right subtree. We store items in the nodes of the tree.
It is often convenient to say the items are the nodes. A
binary tree is sorted if each item is between the smaller or
equal items in the left subtree and the larger or equal items
in the right subtree. For example, the tree illustrated in
Figure 11 is sorted assuming the usual ordering of English
characters. Terms for relations between family members
such as child, parent, sibling are also used for nodes in a
tree. Every node has one parent, except the root which has
no parent. A leaf or external node is one without children;
all other nodes are internal. A node ν is a descendent of µ

if ν = µ or ν is a descendent of a child of µ. Symmetri-
cally, µ is an ancestor of ν if ν is a descendent of µ. The
subtree of µ consists of all descendents of µ. An edge is a
parent-child pair.

The size of the tree is the number of nodes. A binary
tree is full if every internal node has two children. Ev-
ery full binary tree has one more leaf than internal node.
To count its edges we can either count 2 for each internal
node or 1 for every node other than the root. Either way,
the total number of edges is one less than the size of the
tree. A path is a sequence of contiguous edges without
repetitions. Usually we only consider paths that descend
or paths that ascend. The length of a path is the number
of edges. For every node µ there is a unique path from the
root to µ. The length of that path is the depth of µ. The
height of the tree is the maximum depth of any node. The

mk

l

zv

i

j

db

r

g y

c

Figure 11: The parent, sibling and two children of the dark node
are shaded. The internal nodes are drawn as circles while the
leaves are drawn as squares.

path length is the sum of depths over all nodes, and the ex-
ternal path length is the same sum restricted to the leaves
in the tree.

Searching. A binary search tree is a sorted binary tree.
We assume each node is a record storing an item and point-
ers to two children:

struct Node {item info; Node ∗ `, ∗ r};
typedef Node ∗ Tree .

Sometimes it is convenient to also store a pointer to the
parent, but for now we will do without. We can search in
a binary search tree by tracing a path starting at the root.

Node ∗ SEARCH(Tree %, item x)
case % = NULL: return NULL;

x < % → info: return SEARCH(% → `, x);
x = % → info: return %;
x > % → info: return SEARCH(% → r, x)

endcase.

The running time depends on the length of the path, which
is at most the height of the tree. Let n be the size. In the

16



worst case the tree is a linked list and searching takes time
O(n). In the best case the tree is perfectly balanced and
searching takes only time O(log n).

Insert. To add a new item is similarly straightforward:
follow a path from the root to a leaf and replace that leaf
by a new node storing the item. Figure 12 shows the tree
obtained after adding w to the tree in Figure 11. Again

c j

yg

r

b d i

v z

l

k m

w

Figure 12: The shaded nodes indicate the path from the root we
traverse when we insert w into the sorted tree.

the running time depends on the length of the path. If the
insertions come in a random order then the tree is usually
close to being perfectly balanced. Indeed, the tree is the
same as the one that arises in the analysis of quicksort.
The expected number of comparisons for a (successful)
search is one n-th of the expected running time of quick-
sort, which is roughly 2 lnn.

Delete. The main idea for deleting an item is the same
as for inserting: follow the path from the root to the node
ν that stores the item.

Case 1. ν has no internal node as a child. Remove ν.

Case 2. ν has one internal child. Make that child the
child of the parent of ν.

Case 3. ν has two internal children. Find the rightmost
internal node in the left subtree, remove it, and sub-
stitute it for ν, as shown in Figure 13.

νν K J

J

Figure 13: Store J in ν and delete the node that used to store J .

The analysis of the expected search time in a binary search
tree constructed by a random sequence of insertions and
deletions is considerably more challenging than if no dele-
tions are present. Even the definition of a random se-
quence is ambiguous in this case.

Optimal binary search trees. Instead of hoping the in-
cremental construction yields a shallow tree, we can con-
struct the tree that minimizes the search time. We con-
sider the common problem in which items have different
probabilities to be the target of a search. For example,
some words in the English dictionary are more commonly
searched than others and are therefore assigned a higher
probability. Let a1 < a2 < . . . < an be the items and
pi the corresponding probabilities. To simplify the discus-
sion, we only consider successful searches and thus as-
sume

∑n

i=1
pi = 1. The expected number of comparisons

for a successful search in a binary search tree T storing
the n items is

1 + C(T ) =

n
∑

i=1

pi · (δi + 1)

= 1 +

n
∑

i=1

pi · δi,

where δi is the depth of the node that stores ai. C(T )
is the weighted path length or the cost of T . We study
the problem of constructing a tree that minimizes the cost.
To develop an example, let n = 3 and p1 = 1

2
, p2 =

1

3
, p3 = 1

6
. Figure 14 shows the five binary trees with

three nodes and states their costs. It can be shown that the

a2

3aa

1a2

a2

a

1

1 a1

a1

a a3

a2 a

3

2

a3

a3 a

Figure 14: There are five different binary trees of three nodes.
From left to right their costs are 2

3
, 5

6
, 2

3
, 7

6
, 4

3
. The first tree and

the third tree are both optimal.

number of different binary trees with n nodes is 1

n+1

(

2n

n

)

,
which is exponential in n. This is far too large to try all
possibilities, so we need to look for a more efficient way
to construct an optimum tree.

Dynamic programming. We write T
j
i for the optimum

weighted binary search tree of ai, ai+1, . . . , aj , C
j
i for its

cost, and p
j
i =

∑j

k=i pk for the total probability of the

17



items in T
j
i . Suppose we know that the optimum tree

stores item ak in its root. Then the left subtree is T k−1

i

and the right subtree is T
j
k+1

. The cost of the optimum
tree is therefore C

j
i = Ck−1

i + C
j
k+1

+ p
j
i − pk. Since we

do not know which item is in the root we try all possibili-
ties and find the minimum:

C
j
i = min

i≤k≤j
{Ck−1

i + C
j
k+1

+ p
j
i − pk}.

This formula can be translated directly into a dynamic pro-
gramming algorithm. We use three two-dimensional ar-
rays, one for the sums of probabilities, pj

i , one for the costs
of optimum trees, C

j
i , and one for the indices of the items

stored in their roots, Rj
i . We assume that the first array has

already been computed. We initialize the other two arrays
along the main diagonal and add one dummy diagonal for
the cost.

for k = 1 to n do
C[k, k − 1] = C[k, k] = 0; R[k, k] = k

endfor ;
C[n + 1, n] = 0.

We fill the rest of the two arrays one diagonal at a time.

for ` = 2 to n do
for i = 1 to n − ` + 1 do

j = i + ` − 1; C[i, j] = ∞;
for k = i to j do

cost = C[i, k − 1] + C[k + 1, j]
+ p[i, j] − p[k, k];

if cost < C[i, j] then
C[i, j] = cost; R[i, j] = k

endif
endfor

endfor
endfor .

The main part of the algorithm consists of three nested
loops each iterating through at most n values. The running
time is therefore in O(n3).

Example. Table 1 shows the partial sums of probabil-
ities for the data in the earlier example. Table 2 shows
the costs and the indices of the roots of the optimum trees
computed for all contiguous subsequences. The optimum
tree can be constructed from R as follows. The root stores
the item with index R[1, 3] = 1. The left subtree is there-
fore empty and the right subtree stores a2, a3. The root
of the optimum right subtree stores the item with index
R[2, 3] = 2. Again the left subtree is empty and the right
subtree consists of a single node storing a3.

6p 1 2 3
1 3 5 6
2 2 3
3 1

Table 1: Six times the partial sums of probabilities used by the
dynamic programming algorithm.

6C 1 2 3
1 0 2 4
2 0 1
3 0

R 1 2 3
1 1 1 1
2 2 2
3 3

Table 2: Six times the costs and the roots of the optimum trees.

Improved running time. Notice that the array R in Ta-
ble 2 is monotonic, both along rows and along columns.
Indeed it is possible to prove R

j−1

i ≤ R
j
i in every row and

R
j
i ≤ R

j
i+1

in every column. We omit the proof and show
how the two inequalities can be used to improve the dy-
namic programming algorithm. Instead of trying all roots
from i through j we restrict the innermost for -loop to

for k = R[i, j − 1] to R[i + 1, j] do

The monotonicity property implies that this change does
not alter the result of the algorithm. The running time of a
single iteration of the outer for -loop is now

U`(n) =

n−`+1
∑

i=1

(Rj
i+1

− R
j−1

i + 1).

Recall that j = i + `− 1 and note that most terms cancel,
giving

U`(n) = Rn
n−`+2 − R`−1

1 + (n − ` + 1)

≤ 2n.

In words, each iteration of the outer for -loop takes only
time O(n), which implies that the entire algorithm takes
only time O(n2).

18


