NP-Complete Problems

In this section, we discuss a number of NP-complete problems, with the goal to develop a feeling for what hard problems look like. Recognizing hard problems is an important aspect of a reliable judgement for the difficulty of a problem and the most promising approach to a solution. Of course, for NP-complete problems, it seems futile to work toward polynomial-time algorithms and instead we would focus on finding approximations or circumventing the problems altogether. We begin with a result on different ways to write boolean formulas.

Reduction to 3-satisfiability. We call a boolean variable or its negation a *literal*. The *conjunctive normal form* is a sequence of clauses connected by \land s, and each *clause* is a sequence of literals connected by \lor s. A formula is in *3-CNF* if it is in conjunctive normal form and each clause consists of three literals. Even in 3-CNF, the formula is not unique. It turns out that deciding the satisfiability of a boolean formula in 3-CNF is no easier than for general boolean formula. Define 3-SAT = { $\varphi \in SAT \mid \varphi$ is in 3-CNF}. We prove the above claim by reducing SAT to 3-SAT.

SATISFIABILITY LEMMA. SAT $\leq_P 3$ -SAT.

PROOF. We take a boolean formula φ and transform it into 3-CNF in three steps.

Step 1. Think of φ as an expression and represent it as a binary tree. Each node is an operation that gets the input from its two children and forwards the output to its parent. Introduce a new variable for the output and define a new formula φ' for each node, relating the two input edges with the one output edge. Figure 91 shows the tree representation of the formula $\varphi =$ $(x_1 \Longrightarrow x_2) \iff (x_2 \lor \neg x_1)$. The new formula is

Figure 91: The tree representation of the formula φ . Incidentally, φ is a tautology, which means it is satisfied by every truth assignment. Equivalently, $\neg \varphi$ is not satisfiable.

$$\varphi' = (y_2 \iff (x_1 \implies x_2))$$

$$\wedge (y_3 \iff (x_2 \lor \neg x_1))$$

$$\wedge (y_1 \iff (y_2 \iff y_3)) \land y_1$$

It should be clear that there is a satisfying assignment for φ iff there is one for φ' .

Step 2. Convert each clause into disjunctive normal form. The most mechanical way uses the truth table for each clause, as illustrated in Table 10. Each

y_2	x_1	x_2	$y_2 \Leftrightarrow (x_1 \Rightarrow x_2)$	prohibited
0	0	0	0	$(\neg y_2 \land \neg x_1 \land \neg x_2)$
0	0	1	0	$\vee (\neg y_2 \wedge \neg x_1 \wedge x_2)$
0	1	0	1	
0	1	1	0	$\vee (\neg y_2 \wedge x_1 \wedge x_2)$
1	0	0	1	, , , ,
1	0	1	1	
1	1	0	0	$\vee(y_2 \wedge x_1 \wedge \neg x_2)$
1	1	1	1	,

Table 10: Conversion of a clause into a disjunction of conjunctions of at most three literals each.

clause has at most three literals. For example, the negation of $y_2 \iff (x_1 \implies x_2)$ is equivalent to the disjunction of the conjunctions in the rightmost column. It follows that $y_2 \iff (x_1 \implies x_2)$ is equivalent to the negation of that disjunction, which by de

Morgan's law is $(y_2 \lor x_1 \lor x_2) \land (y_2 \lor x_1 \lor \neg x_2) \land (y_2 \lor \neg x_1 \lor \neg x_2) \land (\neg y_2 \lor \neg x_1 \lor x_2).$

Step 3. The clauses with fewer than three literals can be expanded by adding new variables. For example $a \lor b$ is expanded to $(a \lor b \lor p) \land (a \lor b \lor \neg p)$ and (a) is expanded to $(a \lor p \lor q) \land (a \lor p \lor \neg q) \land (a \lor \neg p \lor q) \land (a \lor \neg p \lor \neg q)$.

Each step takes only polynomial time. At the end, we get an equivalent formula in 3-conjunctive normal form. \Box

We note that clauses of length three are necessary to make the satisfiability problem hard. Indeed, there is a polynomial-time algorithm that decides the satisfiability of a formula in 2-CNF.

NP-completeness proofs. Using polynomial-time reductions, we can show fairly mechanically that problems are NP-complete, if they are. A key property here is the transitivity of \leq_P , that is, if $L' \leq_P L_1$ and $L_1 \leq_P L_2$ then $L' \leq_P L_2$, as can be seen by composing the two polynomial-time computable functions to get a third one.

REDUCTION LEMMA. Let $L_1, L_2 \subseteq \{0, 1\}^*$ and assume $L_1 \leq_P L_2$. If L_1 is NP-hard and $L_2 \in \mathsf{NP}$ then $L_2 \in \mathsf{NPC}$.

A generic NP-completeness proof thus follows the steps outline below.

Step 1. Prove that $L_2 \in \mathsf{NP}$.

Step 2. Select a known NP-hard problem, L_1 , and find a polynomial-time computable function, f, with $x \in L_1$ iff $f(x) \in L_2$.

This is what we did for $L_2 = 3$ -SAT and $L_1 =$ SAT. Therefore 3-SAT \in NPC. Currently, there are thousands of problems known to be NP-complete. This is often con-

Figure 92: Possible relation between P, NPC, and NP.

sidered evidence that $P \neq NP$, which can be the case only if $P \cap NPC = \emptyset$, as drawn in Figure 92.

Cliques and independent sets. There are many NPcomplete problems on graphs. A typical such problem asks for the largest complete subgraph. Define a *clique* in an undirected graph G = (V, E) as a subgraph (W, F)with $F = {W \choose 2}$. Given G and an integer k, the CLIQUE problem asks whether or not there is a clique of k or more vertices.

CLAIM. CLIQUE \in NPC.

PROOF. Given k vertices in G, we can verify in polynomial time whether or not they form a complete graph. Thus $CLIQUE \in NP$. To prove property (2), we show that 3-SAT $\leq_P CLIQUE$. Let φ be a boolean formula in 3-CNF consisting of k clauses. We construct a graph as follows:

- (i) each clause is replaced by three vertices;
- (ii) two vertices are connected by an edge if they do not belong to the same clause and they are not negations of each other.

In a satisfying truth assignment, there is at least one true literal in each clause. The true literals form a clique. Conversely, a clique of k or more vertices covers all clauses and thus implies a satisfying truth assignment.

It is easy to decide in time $O(k^2n^{k+2})$ whether or not a graph of n vertices has a clique of size k. If k is a constant, the running time of this algorithm is polynomial in n. For the CLIQUE problem to be NP-complete it is therefore essential that k be a variable that can be arbitrarily large. We use the NP-completeness of finding large cliques to prove the NP-completeness of large sets of pairwise non-adjacent vertices. Let G = (V, E) be an undirected graph. A subset $W \subseteq V$ is *independent* if none of the vertices in W are adjacent or, equivalently, if $E \cap {W \choose 2} = \emptyset$. Given G and an integer k, the INDEPENDENT SET problem asks whether or not there is an independent set of k or more vertices.

CLAIM. INDEPENDENT SET \in NPC.

PROOF. It is easy to verify that there is an independent set of size k: just guess a subset of k vertices and verify that no two are adjacent.

We complete the proof by reducing the CLIQUE to the INDEPENDENT SET problem. As illustrated in Figure 93, $W \subseteq V$ is independent iff W defines a clique in the complement graph, $\overline{G} = (V, {V \choose 2} - E)$. To prove CLIQUE \leq_P INDEPENDENT SET, we transform an instance H, k of the

Figure 93: The four shaded vertices form an independent set in the graph on the left and a clique in the complement graph on the right.

CLIQUE problem to the instance $G = \overline{H}$, k of the INDE-PENDENT SET problem. G has an independent set of size k or larger iff H has a clique of size k or larger.

Various NP-complete graph problems. We now describe a few NP-complete problems for graphs without proving that they are indeed NP-complete. Let G = (V, E) be an undirected graph with n vertices and k a positive integer, as before. The following problems defined for G and k are NP-complete.

An ℓ -coloring of G is a function $\chi : V \to [\ell]$ with $\chi(u) \neq \chi(v)$ whenever u and v are adjacent. The CHRO-MATIC NUMBER problem asks whether or not G has an ℓ coloring with $\ell \leq k$. The problem remains NP-complete for fixed $k \geq 3$. For k = 2, the CHROMATIC NUMBER problem asks whether or not G is bipartite, for which there is a polynomial-time algorithm.

The *bandwidth* of G is the minimum ℓ such that there is a bijection $\beta : V \rightarrow [n]$ with $|\beta(u) - \beta(v)| \leq \ell$ for all adjacent vertices u and v. The BANDWIDTH problem asks whether or not the bandwidth of G is k or less. The problem arises in linear algebra, where we permute rows and columns of a matrix to move all non-zero elements of a square matrix as close to the diagonal as possible. For example, if the graph is a simple path then the bandwidth is 1, as can be seen in Figure 94. We can transform the

Figure 94: Simple path and adjacency matrix with rows and columns ordered along the path.

adjacency matrix of G such that all non-zero diagonals are at most the bandwidth of G away from the main diagonal.

Assume now that the graph G is complete, $E = {V \choose 2}$, and that each edge, e, has a positive integer weight, w(e). The TRAVELING SALESMAN problem asks whether there is a permutation $u_0, u_1, \ldots, u_{n-1}$ of the vertices such that the sum of edges connecting contiguous vertices (and the last vertex to the first) is k or less,

$$\sum_{i=0}^{n-1} w(u_i u_{i+1}) \leq k,$$

where indices are taken modulo n. The problem remains NP-complete if $w : E \to \{1, 2\}$ (reduction to HAMILTO-NIAN CYCLE problem), and also if the vertices are points in the plane and the weight of an edge is the Euclidean distance between the two endpoints.

Set systems. Simple graphs are set systems in which the sets contain only two elements. We now list a few NP-complete problems for more general set systems. Letting V be a finite set, $C \subseteq 2^V$ a set system, and k a positive integer, the following problems are NP-complete.

The PACKING problem asks whether or not C has k or more mutually disjoint sets. The problem remains NPcomplete if no set in C contains more than three elements, and there is a polynomial-time algorithm if every set contains two elements. In the latter case, the set system is a graph and a maximum packing is a maximum matching.

The COVERING problem asks whether or not C has k or fewer subsets whose union is V. The problem remains NP-complete if no set in C contains more than three elements, and there is a polynomial-time algorithm if every sets contains two elements. In the latter case, the set system is a graph and the minimum cover can be constructed in polynomial time from a maximum matching.

Suppose every element $v \in V$ has a positive integer weight, w(v). The PARTITION problem asks whether there is a subset $U \subseteq V$ with

$$\sum_{u \in U} w(u) \quad = \quad \sum_{v \in V-U} w(v).$$

The problem remains NP-complete if we require that U and V - U have the same number of elements.