
Meeting 24 November 29, 2005

NP-Complete Problems

In this section, we discuss a number of NP-complete
problems, with the goal to develop a feeling for what hard
problems look like. Recognizing hard problems is an im-
portant aspect of a reliable judgement for the difficulty of
a problem and the most promising approach to a solution.
Of course, for NP-complete problems, it seems futile to
work toward polynomial-time algorithms and instead we
would focus on finding approximations or circumventing
the problems altogether. We begin with a result on differ-
ent ways to write boolean formulas.

Reduction to 3-satisfiability. We call a boolean variable
or its negation a literal. The conjunctive normal form is a
sequence of clauses connected by ∧s, and each clause is
a sequence of literals connected by ∨s. A formula is in
3-CNF if it is in conjunctive normal form and each clause
consists of three literals. Even in 3-CNF, the formula is
not unique. It turns out that deciding the satisfiability of
a boolean formula in 3-CNF is no easier than for gen-
eral boolean formula. Define 3-SAT = {ϕ ∈ SAT |
ϕ is in 3-CNF}. We prove the above claim by reducing
SAT to 3-SAT.

SATISFIABILITY LEMMA. SAT ≤P 3-SAT.

PROOF. We take a boolean formula ϕ and transform it into
3-CNF in three steps.

Step 1. Think of ϕ as an expression and represent it as
a binary tree. Each node is an operation that gets the
input from its two children and forwards the output
to its parent. Introduce a new variable for the output
and define a new formula ϕ′ for each node, relating
the two input edges with the one output edge. Figure
91 shows the tree representation of the formula ϕ =
(x1 =⇒ x2) ⇐⇒ (x2 ∨ ¬x1). The new formula is

x2x21 1x

y1

2y 3

x

y

Figure 91: The tree representation of the formula ϕ. Inciden-
tally, ϕ is a tautology, which means it is satisfied by every truth
assignment. Equivalently, ¬ϕ is not satisfiable.

ϕ′ = (y2 ⇐⇒ (x1 =⇒ x2))

∧(y3 ⇐⇒ (x2 ∨ ¬x1))

∧(y1 ⇐⇒ (y2 ⇐⇒ y3)) ∧ y1.

It should be clear that there is a satisfying assignment
for ϕ iff there is one for ϕ′.

Step 2. Convert each clause into disjunctive normal
form. The most mechanical way uses the truth ta-
ble for each clause, as illustrated in Table 10. Each

y2 x1 x2 y2 ⇔ (x1 ⇒ x2) prohibited
0 0 0 0 (¬y2 ∧ ¬x1 ∧ ¬x2)
0 0 1 0 ∨(¬y2 ∧ ¬x1 ∧ x2)
0 1 0 1
0 1 1 0 ∨(¬y2 ∧ x1 ∧ x2)
1 0 0 1
1 0 1 1
1 1 0 0 ∨(y2 ∧ x1 ∧ ¬x2)
1 1 1 1

Table 10: Conversion of a clause into a disjunction of conjunc-
tions of at most three literals each.

clause has at most three literals. For example, the
negation of y2 ⇐⇒ (x1 =⇒ x2) is equivalent to the
disjunction of the conjunctions in the rightmost col-
umn. It follows that y2 ⇐⇒ (x1 =⇒ x2) is equiva-
lent to the negation of that disjunction, which by de

80

Morgan’s law is (y2 ∨ x1 ∨ x2) ∧ (y2 ∨ x1 ∨ ¬x2) ∧
(y2 ∨ ¬x1 ∨ ¬x2) ∧ (¬y2 ∨ ¬x1 ∨ x2).

Step 3. The clauses with fewer than three literals can
be expanded by adding new variables. For example
a ∨ b is expanded to (a ∨ b ∨ p) ∧ (a ∨ b ∨ ¬p) and
(a) is expanded to (a ∨ p ∨ q) ∧ (a ∨ p ∨ ¬q) ∧ (a ∨
¬p ∨ q) ∧ (a ∨ ¬p ∨ ¬q).

Each step takes only polynomial time. At the end, we get
an equivalent formula in 3-conjunctive normal form.

We note that clauses of length three are necessary to
make the satisfiability problem hard. Indeed, there is a
polynomial-time algorithm that decides the satisfiability
of a formula in 2-CNF.

NP-completeness proofs. Using polynomial-time re-
ductions, we can show fairly mechanically that problems
are NP-complete, if they are. A key property here is the
transitivity of ≤P , that is, if L′ ≤P L1 and L1 ≤P L2

then L′ ≤P L2, as can be seen by composing the two
polynomial-time computable functions to get a third one.

REDUCTION LEMMA. Let L1, L2 ⊆ {0, 1}∗ and assume
L1 ≤P L2. If L1 is NP-hard and L2 ∈ NP then
L2 ∈ NPC.

A generic NP-completeness proof thus follows the steps
outline below.

Step 1. Prove that L2 ∈ NP.
Step 2. Select a known NP-hard problem, L1, and find

a polynomial-time computable function, f , with x ∈
L1 iff f(x) ∈ L2.

This is what we did for L2 = 3-SAT and L1 = SAT.
Therefore 3-SAT ∈ NPC. Currently, there are thousands
of problems known to be NP-complete. This is often con-

NPC

NP

P

Figure 92: Possible relation between P, NPC, and NP.

sidered evidence that P 6= NP, which can be the case only
if P ∩ NPC = ∅, as drawn in Figure 92.

Cliques and independent sets. There are many NP-
complete problems on graphs. A typical such problem
asks for the largest complete subgraph. Define a clique
in an undirected graph G = (V, E) as a subgraph (W, F)
with F =

(

W

2

)

. Given G and an integer k, the CLIQUE
problem asks whether or not there is a clique of k or more
vertices.

CLAIM. CLIQUE ∈ NPC.

PROOF. Given k vertices in G, we can verify in poly-
nomial time whether or not they form a complete graph.
Thus CLIQUE ∈ NP. To prove property (2), we show
that 3-SAT ≤P CLIQUE. Let ϕ be a boolean formula in
3-CNF consisting of k clauses. We construct a graph as
follows:

(i) each clause is replaced by three vertices;
(ii) two vertices are connected by an edge if they do not

belong to the same clause and they are not negations
of each other.

In a satisfying truth assignment, there is at least one true
literal in each clause. The true literals form a clique. Con-
versely, a clique of k or more vertices covers all clauses
and thus implies a satisfying truth assignment.

It is easy to decide in time O(k2nk+2) whether or not a
graph of n vertices has a clique of size k. If k is a constant,
the running time of this algorithm is polynomial in n. For
the CLIQUE problem to be NP-complete it is therefore es-
sential that k be a variable that can be arbitrarily large.
We use the NP-completeness of finding large cliques to
prove the NP-completeness of large sets of pairwise non-
adjacent vertices. Let G = (V, E) be an undirected graph.
A subset W ⊆ V is independent if none of the vertices in
W are adjacent or, equivalently, if E ∩

(

W

2

)

= ∅. Given
G and an integer k, the INDEPENDENT SET problem asks
whether or not there is an independent set of k or more
vertices.

CLAIM. INDEPENDENT SET ∈ NPC.

PROOF. It is easy to verify that there is an independent set
of size k: just guess a subset of k vertices and verify that
no two are adjacent.

We complete the proof by reducing the CLIQUE to the
INDEPENDENT SET problem. As illustrated in Figure 93,
W ⊆ V is independent iff W defines a clique in the com-
plement graph, G = (V,

(

V

2

)

−E). To prove CLIQUE ≤P

INDEPENDENT SET, we transform an instance H, k of the

81

Figure 93: The four shaded vertices form an independent set in
the graph on the left and a clique in the complement graph on the
right.

CLIQUE problem to the instance G = H, k of the INDE-
PENDENT SET problem. G has an independent set of size
k or larger iff H has a clique of size k or larger.

Various NP-complete graph problems. We now de-
scribe a few NP-complete problems for graphs without
proving that they are indeed NP-complete. Let G =
(V, E) be an undirected graph with n vertices and k a pos-
itive integer, as before. The following problems defined
for G and k are NP-complete.

An `-coloring of G is a function χ : V → [`] with
χ(u) 6= χ(v) whenever u and v are adjacent. The CHRO-
MATIC NUMBER problem asks whether or not G has an `-
coloring with ` ≤ k. The problem remains NP-complete
for fixed k ≥ 3. For k = 2, the CHROMATIC NUMBER
problem asks whether or not G is bipartite, for which there
is a polynomial-time algorithm.

The bandwidth of G is the minimum ` such that there
is a bijection β : V → [n] with |β(u) − β(v)| ≤ ` for
all adjacent vertices u and v. The BANDWIDTH problem
asks whether or not the bandwidth of G is k or less. The
problem arises in linear algebra, where we permute rows
and columns of a matrix to move all non-zero elements of
a square matrix as close to the diagonal as possible. For
example, if the graph is a simple path then the bandwidth
is 1, as can be seen in Figure 94. We can transform the

01

1

1

0

1

10

1

0

0
0

0

0 1

1

1

1

7

6

5

4

3

2

1

8

1

101

1

0

Figure 94: Simple path and adjacency matrix with rows and
columns ordered along the path.

adjacency matrix of G such that all non-zero diagonals are
at most the bandwidth of G away from the main diagonal.

Assume now that the graph G is complete, E =
(

V

2

)

,
and that each edge, e, has a positive integer weight, w(e).
The TRAVELING SALESMAN problem asks whether there
is a permutation u0, u1, . . . , un−1 of the vertices such that
the sum of edges connecting contiguous vertices (and the
last vertex to the first) is k or less,

n−1
∑

i=0

w(uiui+1) ≤ k,

where indices are taken modulo n. The problem remains
NP-complete if w : E → {1, 2} (reduction to HAMILTO-
NIAN CYCLE problem), and also if the vertices are points
in the plane and the weight of an edge is the Euclidean
distance between the two endpoints.

Set systems. Simple graphs are set systems in which the
sets contain only two elements. We now list a few NP-
complete problems for more general set systems. Letting
V be a finite set, C ⊆ 2V a set system, and k a positive
integer, the following problems are NP-complete.

The PACKING problem asks whether or not C has k or
more mutually disjoint sets. The problem remains NP-
complete if no set in C contains more than three elements,
and there is a polynomial-time algorithm if every set con-
tains two elements. In the latter case, the set system is a
graph and a maximum packing is a maximum matching.

The COVERING problem asks whether or not C has k

or fewer subsets whose union is V . The problem remains
NP-complete if no set in C contains more than three ele-
ments, and there is a polynomial-time algorithm if every
sets contains two elements. In the latter case, the set sys-
tem is a graph and the minimum cover can be constructed
in polynomial time from a maximum matching.

Suppose every element v ∈ V has a positive integer
weight, w(v). The PARTITION problem asks whether
there is a subset U ⊆ V with

∑

u∈U

w(u) =
∑

v∈V −U

w(v).

The problem remains NP-complete if we require that U

and V − U have the same number of elements.

82

