
CPS234 Computational Geometry 06 September 2005

Lecture 3: Course Introduction

Lecturer: Pankaj K. Agarwal Scribe: Monika Schaeffer

3.1 Convex Hulls in 2D

3.1.1 Where we left off...

At the end of the previous lecture, we looked at two algorithms for computing the convex hull of a set
of points in 2D. The first was the Graham’s Scan, which runs inO(n log n) time. The second was the
gift-wrapping algorithm, which runs inO(nh) for output sizeh. The gift-wrapping algorithm is better if
h < log n, intuitively if most of the points lie within the confines of the convex hull.

We want to improve the gift-wrapping algorithm toO(n log h), which is provably optimal.

3.1.2 The (original) gift-wrapping algorithm

Given a set of points,

Starting with the bottom-most point and a horizontal line...
While the convex hull isn’t closed off

Rotate the line anchored at the point counter-clockwise until you hit another point
Add the segment between the current anchor and the new point to the hull
Make the new point the anchor.

end while

Note that, given the anchor point and another pointp from S, iff p is the correct next point, all remaining
points ofS are on the same side of the line from the anchor top.

3.1.3 How we really “rotate the line”

Givenq the old anchor,p the new anchor, andz ∈ S − {p, q} arbitrarily picked:
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Figure 3.1:giftwrapping in 2D

Figure 3.2:all the points in S will be on the same side of the line through the anchor and the correct next
point.

∀w ∈ S − {p, q, z}
if w andq lie on the opposite side of linepz

z=w
end if

end∀
return z

That takesO(n) time. We’d like it to takeO(n
h log n) time instead.

3.1.4 O/P-sensitive algorithm

Assume you knowh.

PartitionS into dn/he subsetss1, s2...sdn/he where|si| ≤ h.
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Figure 3.3:p, q, and z

For all i, computePi = Conv(si) using Graham’s Scan.

Figure 3.4:Step 1: Divide into subsets and get their convex hulls. Step 2: Calculate tangents to each hull
from the anchor p.

Starting with the bottom-most point as your anchor, find the (first, counter-clockwise) tangent lines from that
point to eachPi. The points on each hull that correspond to these will be{t1, t2...} (For the hull that contains
the anchor, use the next point around the hull.) The next point inConv(S) is one of these. Theseti can be
calculated inO(log h) time, and there aredn/he of them.

This changes the algorithm to this (where l is the line from q to p, and q was the previous anchor):

FIRSTPOINT(p, l, S)
Preprocessing: Find all theti
∀w ∈ {t1, ...}

if w andq lie on the opposite side of linepz
z=w

end if
end∀
return z

end
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MAIN
start with the bottom-most pointp0 and the next one along the convex hull,p
while p 6= p0 again

q =FIRSTPOINT(p, l, S)
CH = CH ◦ q
p = q

end while
returnCH

end

Time isO(n log h).

3.1.5 How do we know h?

guess a smallh1

run the algorithm
if hi < the realh

hi+1 = h2
i and repeat

Note that the runtime doubles betweenO(n log hi) andO(n log hi+1) = O(n log(h2
i )) = O(2∗n log hi). For

k iterations, you haven log h1 +n log h2 + · · ·+n log hk = a geometric series= O(n log hk) = O(n log h),
andhi = 22i

.

3.2 Convex hulls in higher dimensions

GivenS: set of points inRd (and using notationh+ : halfspaces)

conv(s) =
⋂

h+⊇S

h+

m

convspan(s) = {x ∈ Rd|x =
n∑

i=1

λipi,

n∑

i=1

λi = 1, 0 ≤ λi ≤ 1}

P is the convex hull ofS. It is a convex polytope. A hyperplaneh supportsP if P ∩ h 6= 0 andp ⊆ h+ (one
of the two halfspaces defined byh)

f = P ∩ h is a face of P.f is the convex hull of(S ∩ h).
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Figure 3.5:supporting hyperplanes in 2D

Faces have dimensions.
vertex: Face of dimension 0
edge: Face of dimension 1

A d-dimension convex hull has faces of dimensions 0 to d-1.

facet: Face of dimension d-1
ridge: Face of dimension d-2

Each ridge connects two facets.

Figure 3.6:two facets and a ridge of a convex hull in 3D

3.2.1 properties of faces

h, g ⊆ h are faces ofP ⇒ g is a face ofh.
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if g, h are faces ofP, g ∩ h is also a face ofP .

(For consistency and so we don’t need lots of special cases, let’s let∅ be a face of everything, with
dimension -1, andP be a d-dimension face ofP )

3.2.2 How to represent

Define a face-graph ofP : F (P ) with the nodes being all the faces.

Figure 3.7:A face-graph F(P). Each level contains all the faces of that dimension.

A face is defined by its verticies.

3.2.3 two algorithms for computing a convex hull

but first! Upper bound Thm:

A convex polytope withn verticies hasO(nbd/2c) faces. Ford = 2, 3, linear. Ford = 4, 5, quadratic! This
is a tight bound, with examples (such as the cyclic polytope).
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3.2.4 Higher dimension gift-wrapping

For a ridge, there are 2 facets.

Given a ridge and a facet attatched to it, find the other facet.

Figure 3.8:Gift-wrapping in 3D: In a, you have a found facet and a ridge to search from. In b, that ridge’s
other facet’s been found, and now you search from a new ridge. New facets are found by rotating hyperplanes
anchored at ridges.

Each ridge is a convex hull of d-1 points, and each facet is a convex hull of d points.

3.2.5 d-simplexes

A d-simplex is a convex hull of d+1 affinely independent points. A 0-simplex is a point. A 1-simplex is a line
segment. A 2-simplex is a triangle. A 3-simplex is tetrahedron. Faces of simplexes are simplexes.

If the points inS are affinely independent, every ridge is a d-2-simplex, and every facet is a d-1-simplex.

3.2.6 (back to) Higher dimension gift-wrapping

Ridges can be represented as(p1, ..., pd−1) = g and facets adjacent to them as(g, c).
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To calculate the convex hull, then,

Q = ∅ =queue of open ridges
f : find some facet of conv(S)
f = (p1, ...pd)
for i = 1 to d

insert((f − {pi}), pi) into Q
while Q not empty

(g, c) =delete(Q)
(g, b) = find− other − facet((g, c), S)
for all other ridges on the new facet

if they’re in Q, delete them
else, insert intoQ

end

This runs inO(nh) time, and can be fiddled with to run inO(h2 + h log n) time.


