
CPS234 Computational Geometry 15 September 2005

Lecture 6: RIC for Segment Intersections

Lecturer: Pankaj K. Agarwal Scribe: Amber Stillings

6.1 Lecture Summary

This lecture will describe a Randomized Incremental Algorithm (RIC) for Segment Intersections. The anal-
ysis for this algorithm is given, and it is shown that the expected running time isO(n log n + k) wherek is
the number of intersection points,0 ≤ k ≤ (

n
2

)
.

6.2 Randomized Incremental Construction Algorithm

6.2.1 Vertical Decomposition

S = {e1, . . . , en} ⊆ <d

Vertical Decomposition of S (V D(S))
- From each endpoint of S or intersection point of 2 segments in S, draw a vertical segment until it hits another
segment of S or to infinity.
- Partitions space| V D(S) |= O(n + k) trapezoids.

Figure 6.1: Planar Subdivision Graph
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Figure 6.2: Types of Trapezoids (tau signifiesτ )

If e is one of 4 segments boundingτ , thene definesτ .

N(e, S) = {τ ∈ V D(S) | e definesτ}
deg(e, S) =| N(e, S) |
I(e, S)e/∈S = {τ ∈ V D(S) | e intersectsτ}

6.2.2 RIC

Given a vertical decomposition, add another segment.

new line new line

Figure 6.3: New Segment Added to Vertical Decomposition
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6.2.3 Algorithm

Si = {e1, . . . , ei}
V D(S0) = <2

for i = 1 to n do
ComputeI(ei, Si−1)
Delete these cells
ComputeN(ei, Si−1 ∪ e)
Add these cells⇒ V D(Si)

endfor

Claim 1 V D(Si) = V D(Si−1)− I(e, Si−1) + N(e, Si)

Find the cells (trapezoids) that intersect the new segment, modify them, and add any new cells.

6.2.4 Bookkeeping

Keep ”conflict lists” similar to bookkeeping with RIC and conflict hulls. More specifically, for each segment,
keep track of the trapezoids it defines and vice versa.

MaintainI(ej , Si) ∀j > i
Foreachτ ∈ V D(Si), Sτ = {ej | τ ∈ I(ej , Sj)}
Time spent bookkeeping: ∑

τ∈I(e,Si−1)

| Sτ |

Now we need to look at the time spent creating/deleting cells, or just creating cells because deletion of cells
is bounded by creation of cells.

6.3 Analysis

New cells created correspond to adjacent segments to that being inserted. So the number of cells created is
deg(si, Si) wheresi is a random element ofSi.
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1
| Si |

∑

e∈Si

deg(e, Si) =
1

| Si | ·
1
i
· 4V D(Si)

ExpectedV alue =
1(
n
i

)
∑

Si∈(S
i)

1
i
· 4 | V D(Si) |

=
4
i
· 1(

n
i

)
∑

Si∈(S
i)
| V D(Si) |

Φi =
1(
n
i

)
∑

Si∈(S
i)
| V D(Si) |

Φi = Expected size ofV D of a subset of sizei of S.

Claim 2 Φi = O(i + k · i2

n2 )

Φi =
1(
n
i

)
∑

R∈(S
i)
| V D(R) |

= O(
1
i
(i + k · i2

n2
))

n∑

i=1

O(1 + k · i2

n2
) = O(n + k)

Time Spent in Bookkeeping:
(e, τ) : e /∈ Si, τ is a cell created in stepi
e ∩ τ 6= NULL

Probability Pr[τ is created in stepi] = 4
i

Expected time spent in bookkeeping in stepi:

1(
n
i

)
∑

Si∈(S
i)

∑

e/∈Si

4
i
| I(e, Si) |

(Si → R)
1(
n
i

)
∑

R∈(S
i)

4
i

∑

e/∈R

| V D(R) | − | V D(R ∪ e) | +deg(e,R ∪ e)

| V D(R) | − | V D(R ∪ e) | becomes a telescopic series; so ignore it



Lecture 6: 15 September 2005 6-5

n∑

i=1

1(
n
i

)
∑

R∈(S
i)

4
i

∑

e/∈R

deg(e, R ∪ e) =
4
i
· 1(

n
i

)
∑

R′∈( S
i+1)

∑

e∈R′
deg(e,R′)

=
4
i
· 1(

n
i

)
∑

R′∈( S
i+1)

4 | V D(R′) |

=
16
i
· 1(

n
i

)
∑

R′∈( S
i+1)

| V D(R′) |

n∑

i=1

16(n− 1)
i(i + 1)

· Φi+1 ≤
n∑

i=1

n

i(i + 1)
[(i + 1) + k

(i + 1)2

n2
]

=
n∑

i=1

n[
1
i

+
k

n2
]

= O(n log n + k)

Theorem 1 Random Sampling Technique
Choose Random SampleR
R ⊆ S: random sample of sizer
τ ∈ V D(R)
w(τ): number of segments inS \R that intersectτ

E[
∑

τ∈V D(R)

w(τ)P ] ≤ c · Φr · (n

r
)P

Figure 6.4: Random points, expect n/r elements in segments
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6.4 Other Applications

Vertical Tangent Points−− 

To get an idea of free

do a modified VD.

VD defined for curved
surfaces also

space in an obstacle course,

Figure 6.5: Shapes where VD is applicable

6.4.1 GIS

Elevation data collected:M1 = (x, y, f1(x, y)), f1: elevation
Temperature data collectedM2 = (x, y, f2(x, y)), f2: elevation

M1
M2

Figure 6.6: Shapes where VD is applicable

Do triangulation and piecewise interpolation.
Overlay maps.M3 = (x, y, g(x, y)), g = f1

⊕
f2
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6.4.2 Splines

This algorithm can also extend to splines as long as segments are monotone.

OK

Not OK

Figure 6.7: Splines – the first one monotone, the second not
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6.5 Additional Information/Links

Boissonnat and Snoeyink discuss efficient algorithms using restricted predicates[1]. This algorithm works
with both line segments and curves. This paper also discusses an algorithm for finding red/blue line and
curve segment intersections, with the segments colored so that no 2 red and no 2 blue segments cross.

Hobby discusses a practical algorithm for segment intersection with finite precision output. [2] This paper is
interesting because it summarizes the pros/cons of other algorithms.

Chazelle and Edelsbrunner present an optimal algorithm for finding line segment intersections in the plane
[3]. This algorithm runs inO(n log n + k) time and uses at mostn + k storage. Amortized analysis is used
to analyze the complexity of this algorithm.
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