Today’s topics

- **Operating Systems**
 - Brookshear, Chapter 3
 - Great Ideas, Chapter 10
 - Slides from Kevin Wayne’s COS 126 course

- **Performance & Computer Architecture**
 - http://computer.howstuffworks.com/pc.htm

- **Slides from Prof. Marti Hearst of UC Berkeley SIMS**

- **Upcoming**
 - Computability
 - Great Ideas, Chapter 15
 - Brookshear, Chapter 11
Performance

- Performance = 1/Time
 - The goal for all software and hardware developers is to increase performance
- Metrics for measuring performance (pros/cons?)
 - Elapsed time
 - CPU time
 - Instruction count (RISC vs. CISC)
 - Clock cycles per instruction
 - Clock cycle time
 - MIPS vs. MFLOPS
 - Throughput (tasks/time)
 - Other more subjective metrics?
- What kind of workload to be used?
 - Applications, kernels and benchmarks (toy or synthetic)
Boolean Logic

- AND, OR, NOT, NOR, NAND, XOR
- Each operator has a set of rules for combining two binary inputs
 - These rules are defined in a Truth Table
 - (This term is from the field of Logic)
- Each implemented in an electronic device called a gate
 - Gates operate on inputs of 0’s and 1’s
 - These are more basic than operations like addition
 - Gates are used to build up circuits that
 - Compute addition, subtraction, etc
 - Store values to be used later
 - Translate values from one format to another
Truth Tables

AND gate

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR gate

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

NOT gate

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
The Big Picture

- Since 1946 all computers have had 5 components
 - The Von Neumann Machine

- What is computer architecture?
 Computer Architecture = Machine Organization + Instruction Set Architecture + ...
Fetch, Decode, Execute Cycle

- Computer instructions are stored (as bits) in memory
- A program’s execution is a loop
 - Fetch instruction from memory
 - Decode instruction
 - Execute instruction
- Cycle time
 - Measured in hertz (cycles per second)
 - 2 GHz processor can execute this cycle up to 2 billion times a second
 - Not all cycles are the same though...
Organization

- **Capabilities & Performance**
 Characteristics of Principal Functional Units (Fus)
 - (e.g., Registers, ALU, Shifters, Logic Units, ...)
- **Ways in which these components are interconnected**
- **Information flows between components**
- **Logic and means by which such information flow is controlled.**
- **Choreography of FUs to realize the ISA**
Memory bottleneck

- CPU can execute dozens of instruction in the time it takes to retrieve one item from memory
- Solution: Memory Hierarchy
 - Use fast memory
 - Registers
 - Cache memory
 - Rule: small memory is fast, large memory is small
What is Realtime?

- **Response time**
 - Panic
 - How to tell “I am still computing”
 - Progress bar
- **Flicker**
 - Fusion frequency
- **Update rate vs. refresh rate**
 - Movie film standards (24 fps projected at 48 fps)
- **Interactive media**
 - Interactive vs. non-interactive graphics
 - computer games vs. movies
 - animation tools vs. animation
 - Interactivity => real-time systems
 - system must respond to user inputs without any perceptible delay
 (A Primary Challenge in VR)
A great idea in computer science

- **Temporal locality**
 - Programs tend to access data that has been accessed recently (i.e. close in \textit{time})

- **Spatial locality**
 - Programs tend to access data at an address near recently referenced data (i.e. close in \textit{space})

- **Useful in graphics and virtual reality as well**
 - Realistic images require significant computational power
 - Don’t need to represent distant objects as well

- **Efficient distributed systems rely on locality**
 - Memory access time increases over a network
 - Want to access data on local machine
Instruction Set Architecture

... the attributes of a [computing] system as seen by the programmer, *i.e.* the conceptual structure and functional behavior, as distinct from the organization of the data flows and controls the logic design, and the physical implementation.

– Amdahl, Blaaw, and Brooks, 1964

-- Organization of Programmable Storage

-- Data Types & Data Structures: Encodings & Representations

-- Instruction Set

-- Instruction Formats

-- Modes of Addressing and Accessing Data Items and Instructions

-- Exceptional Conditions
The Instruction Set: a Critical Interface

What is an example of an Instruction Set architecture?
Forces on Computer Architecture

- Technology
- Programming Languages
- Cleverness
- Applications
- Operating Systems
- History
In ~1985 the single-chip processor (32-bit) and the single-board computer emerged

- workstations, personal computers, multiprocessors have been riding this wave since

Now, we have multicore processors
Technology => dramatic change

- **Processor**
 - logic capacity: about 30% per year
 - clock rate: about 20% per year

- **Memory**
 - DRAM capacity: about 60% per year (4x every 3 years)
 - Memory speed: about 10% per year
 - Cost per bit: improves about 25% per year

- **Disk**
 - capacity: about 60% per year
 - Total use of data: 100% per 9 months!

- **Network Bandwidth**
 - Bandwidth increasing more than 100% per year!
Performance Trends

Log of Performance vs. Year

- Supercomputers
- Mainframes
- Minicomputers
- Microprocessors

Laws?

Define each of the following. What has its effect been on the advancement of computing technology?

- Moore’s Law
- Amdahl’s Law
- Metcalfe’s Law
What is an Operating System?

Quotes from Microsoft trial.

Dave Farber [DOJ witness]:

- "An Operating System is software that controls the execution of programs on computer systems and may provide low-level services such as resource allocation, scheduling and input-output control in a form which is sufficiently simple and general so that these services are broadly useful to software developers."

Ed Felten [DOJ witness]:

- "An operating system is software that provides services relating to booting the machine and starting programs, interfacing with the hardware, managing and scheduling use of hardware resources, and basic security services."
What is an Operating System?

Jim Allchin [Microsoft witness] :

- "A computer operating system, like any other type of software, is a set of instructions that causes a computer to carry out specified functions. Although no clear line of demarcation exists between the functions performed by operating system software and other types of software, operating systems generally serve, at a bare minimum, as the computer’s 'central nervous system,' scheduling the execution of tasks by the central processing unit and controlling the flow of information within the computer and between the computer and any peripheral devices that may be attached to it. It is important to bear in mind that all software is a series of instructions to a computer, and terms that have evolved to categorize such software are merely descriptive of general categories of functionality. There is no widely accepted definition of an operating system; it is a concept that has evolved over time based on what is technically possible and what customer[s] have said they want."
What is an Operating System?

Judge Jackson’s ruling:

- "An 'operating system' is a software program that controls the allocation and use of computer resources (such as central processing unit time, main memory space, disk space, and input/output channels). The operating system supports the functions of software programs, called 'applications,' that perform specific user-oriented tasks."

(AP PHOTO)
What is an Operating System?

Modern operating systems support:

- Software tools for creating programs
 - libraries, compilers
- Running multiple programs.
 - multiprogramming
- Saving/accessing data.
 - files, virtual memory
- User interaction.
 - window system
- Interaction with other systems.
 - networking
- Core applications programs.
 - client-server
What is an Operating System?

Execution Control.
- OS keeps track of state of CPU, devices.

External Devices.
- Display, keyboard, mouse, disks, CD, network.

Virtual Machines.
- Pretend machines that each person/program can use.
- OS implements abstract devices.
Multiprogramming

Operating system "kernel" keeps track of several programs.
- CPU does 1 thing at a time.
- Goal: illusion of multiple machines.

INTERRUPT:
- Part of hardware of real machines
 - stop
 - save Program Counter (PC) somewhere "special"
 - change PC
- Necessary to manage input-output devices.
 - mouse click, keyboard
- OS allows several programs/processes to "share" CPU by keeping table of "current" PC’s for programs setting clock to interrupt periodically.
 - Context switching
 - round-robin or user priorities
Virtual Memory

Problem 1: several programs need to share same memory.
 - Direct solution: apportion up the memory.

Problem 2: program needs more memory than machine has.
 - Direct solution: "overlays."
 - program shuffles its own data in and out of memory to disk

It’s all just memory, why should file system look more complicated?

"Better" solution: VIRTUAL MEMORY (1960’s).
 - All programs assume access to all memory.
 - Each program actually uses a small portion.
Size of Virtual Memory

How many bits is enough?
- 16 bits is not enough.
- 32 bits is not enough.
- 64 bits?
 - $2^{64} = 18,446,744,073,709,551,616 > 10^{19}$ addresses
- 512 certainly enough.

Some big numbers.
- 2^{70}: number of grains of sand on beach at Coney Island.
- 2^{93}: number of oxygen atoms in a thimble.
- 2^{256}: number of electrons in the universe.

More sophisticated paging strategies needed.
Paging

Each page brought in has to REPLACE another.

- Page replacement strategies.
 - Ex. least recently used
- Still being studied, invented.

Basic principles.

- MEMORY HIERARCHY
 - local: fast, small, expensive
 - remote: slow, huge, cheap
- Tradeoff speed for cost.
- CACHE recently accessed information.
Window Manager

Virtual Terminals.

- Each program has its own virtual display.
- Ex. X-terminal: complex, customizable, virtual!
- Just another simulation program.
- Commonplace today, rare in 1985
- Ingenious design meets accelerating technology.

History.

- Xerox PARC (Alto), Macintosh, Windows NT, X-terminal, Netscape.

Problem or opportunity?

- Truly "virtual."
- Moving away from grounding in reality.
 - harder for programmers to understand what is happening
- Flexibility vs. standardization.
- Other ways of interacting with computer?
Client-Server Model

System divided into two distinct parts.
- Ex: display server (implement virtual display).
 - draw stuff on screen
 - monitor keyboard and mouse input
- Ex: Client (use virtual display).
 - applications programs

Server is interface between client program and display hardware.

Model generalizes beyond display management.
- Client: request service.
- Server: do the work.

Advantages.
- Single server can handle multiple clients.
- Keeps kernel simple, adaptable.
- Smooth transition to DISTRIBUTED SYSTEM.
The Network

"Ultimate" distributed system.

INTERNET
- "All the cooperating networks."

Circuit switched network
- Phone system.
Packet switched network
- Network system.

IP: Internet protocol.
- Packet.
 - 1-1500 bytes
 - from address
 - to address
- Address.
 - Ex. 152.3.140.129

ROUTERS
- Move packets across network.

TCP: Transmission control protocol.
- Break big messages into packets.
- Collect received packets into messages.
- Check for errors.

Domain Name System.
- Distribute authority/responsibility for name service.
- Can use "www.duke.edu" instead of 152.3.233.7.

(many details omitted!)
Operating System / Network Issues

Network applications.
- Communication (mail, news).
- Remote login (telnet).
- File transfer (ftp, Napster, Gnutella).
- Publishing (html).
- Browsing (Netscape, IE).
- E-commerce.

Modern rendition of ancient tradeoffs.
- Personal computer or Network computer.
- ONE huge virtual machine?!?

Compare/contrast.
- Computer center, phone system, Post office (snail mail), Libraries.

Current network ethics:
- Honor and foster individualism.
- Network is good and must be preserved.

Should hackers or the government "run" the net?
- Can commercial apps trust an "open net"?
- Does a "closed net" violate individual rights?

Security/Privacy/Copyright.

Who owns? Who pays?
Unix File System Layout

Goal: provide simple abstraction (sequence of bytes) for user programs.

Each disk has:
- I-nodes (one per file).
 - indexing information
 - pointers to disk blocks
- Data blocks.
 - just data

Superblock (block 1).
- Catalog of disk layout.
- Size and number of data blocks.
- Size and number of i-nodes.
- Free list of data blocks.

File.
- List of data blocks.

Directory.
- List of file names.
- i-node addresses

Forms a TREE structure.
- Traverse the tree for sequential access.